blob: 4edebe90ed00897570a4fda5c758d232bc7c15b6 [file] [log] [blame]
/*
* freeglut_geometry.c
*
* Freeglut geometry rendering methods.
*
* Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved.
* Written by Pawel W. Olszta, <olszta@sourceforge.net>
* Creation date: Fri Dec 3 1999
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include "internal.h"
/*
* TODO BEFORE THE STABLE RELEASE:
*
* Following functions have been contributed by Andreas Umbach.
*
* glutWireCube() -- looks OK
* glutSolidCube() -- OK
*
* Those functions have been implemented by John Fay.
*
* glutWireTorus() -- looks OK
* glutSolidTorus() -- looks OK
* glutWireDodecahedron() -- looks OK
* glutSolidDodecahedron() -- looks OK
* glutWireOctahedron() -- looks OK
* glutSolidOctahedron() -- looks OK
* glutWireTetrahedron() -- looks OK
* glutSolidTetrahedron() -- looks OK
* glutWireIcosahedron() -- looks OK
* glutSolidIcosahedron() -- looks OK
*
* The Following functions have been updated by Nigel Stewart, based
* on FreeGLUT 2.0.0 implementations:
*
* glutWireSphere() -- looks OK
* glutSolidSphere() -- looks OK
* glutWireCone() -- looks OK
* glutSolidCone() -- looks OK
*/
/* -- INTERFACE FUNCTIONS -------------------------------------------------- */
/*
* Draws a wireframed cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
*/
void GLUTAPIENTRY glutWireCube( GLdouble dSize )
{
double size = dSize * 0.5;
# define V(a,b,c) glVertex3d( a size, b size, c size );
# define N(a,b,c) glNormal3d( a, b, c );
/*
* PWO: I dared to convert the code to use macros...
*/
glBegin( GL_LINE_LOOP ); N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+); glEnd();
glBegin( GL_LINE_LOOP ); N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+); glEnd();
glBegin( GL_LINE_LOOP ); N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+); glEnd();
glBegin( GL_LINE_LOOP ); N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-); glEnd();
glBegin( GL_LINE_LOOP ); N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+); glEnd();
glBegin( GL_LINE_LOOP ); N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-); glEnd();
# undef V
# undef N
}
/*
* Draws a solid cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
*/
void GLUTAPIENTRY glutSolidCube( GLdouble dSize )
{
double size = dSize * 0.5;
# define V(a,b,c) glVertex3d( a size, b size, c size );
# define N(a,b,c) glNormal3d( a, b, c );
/*
* PWO: Again, I dared to convert the code to use macros...
*/
glBegin( GL_QUADS );
N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+);
N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+);
N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+);
N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-);
N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+);
N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-);
glEnd();
# undef V
# undef N
}
/*
* Compute lookup table of cos and sin values forming a cirle
*
* Notes:
* It is the responsibility of the caller to free these tables
* The size of the table is (n+1) to form a connected loop
* The last entry is exactly the same as the first
* The sign of n can be flipped to get the reverse loop
*/
static void circleTable(double **sint,double **cost,const int n)
{
int i;
/* Table size, the sign of n flips the circle direction */
const int size = abs(n);
/* Determine the angle between samples */
const double angle = 2*M_PI/(double)n;
/* Allocate memory for n samples, plus duplicate of first entry at the end */
*sint = (double *) calloc(sizeof(double), size+1);
*cost = (double *) calloc(sizeof(double), size+1);
/* Bail out if memory allocation fails, fgError never returns */
if (!(*sint) || !(*cost))
{
free(*sint);
free(*cost);
_glut_fatal("Failed to allocate memory in circleTable");
}
/* Compute cos and sin around the circle */
for (i=0; i<size; i++)
{
(*sint)[i] = sin(angle*i);
(*cost)[i] = cos(angle*i);
}
/* Last sample is duplicate of the first */
(*sint)[size] = (*sint)[0];
(*cost)[size] = (*cost)[0];
}
/*
* Draws a solid sphere
*/
void GLUTAPIENTRY glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
{
int i,j;
/* Adjust z and radius as stacks are drawn. */
double z0,z1;
double r0,r1;
/* Pre-computed circle */
double *sint1,*cost1;
double *sint2,*cost2;
circleTable(&sint1,&cost1,-slices);
circleTable(&sint2,&cost2,stacks*2);
/* The top stack is covered with a triangle fan */
z0 = 1.0;
z1 = cost2[1];
r0 = 0.0;
r1 = sint2[1];
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0,0,1);
glVertex3d(0,0,radius);
for (j=slices; j>=0; j--)
{
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
}
glEnd();
/* Cover each stack with a quad strip, except the top and bottom stacks */
for( i=1; i<stacks-1; i++ )
{
z0 = z1; z1 = cost2[i+1];
r0 = r1; r1 = sint2[i+1];
glBegin(GL_QUAD_STRIP);
for(j=0; j<=slices; j++)
{
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
}
glEnd();
}
/* The bottom stack is covered with a triangle fan */
z0 = z1;
r0 = r1;
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0,0,-1);
glVertex3d(0,0,-radius);
for (j=0; j<=slices; j++)
{
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
}
glEnd();
/* Release sin and cos tables */
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
/*
* Draws a solid sphere
*/
void GLUTAPIENTRY glutWireSphere(GLdouble radius, GLint slices, GLint stacks)
{
int i,j;
/* Adjust z and radius as stacks and slices are drawn. */
double r;
double x,y,z;
/* Pre-computed circle */
double *sint1,*cost1;
double *sint2,*cost2;
circleTable(&sint1,&cost1,-slices );
circleTable(&sint2,&cost2, stacks*2);
/* Draw a line loop for each stack */
for (i=1; i<stacks; i++)
{
z = cost2[i];
r = sint2[i];
glBegin(GL_LINE_LOOP);
for(j=0; j<=slices; j++)
{
x = cost1[j];
y = sint1[j];
glNormal3d(x,y,z);
glVertex3d(x*r*radius,y*r*radius,z*radius);
}
glEnd();
}
/* Draw a line loop for each slice */
for (i=0; i<slices; i++)
{
glBegin(GL_LINE_STRIP);
for(j=0; j<=stacks; j++)
{
x = cost1[i]*sint2[j];
y = sint1[i]*sint2[j];
z = cost2[j];
glNormal3d(x,y,z);
glVertex3d(x*radius,y*radius,z*radius);
}
glEnd();
}
/* Release sin and cos tables */
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
/*
* Draws a solid cone
*/
void GLUTAPIENTRY glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z0,z1;
double r0,r1;
const double zStep = height/stacks;
const double rStep = base/stacks;
/* Scaling factors for vertex normals */
const double cosn = ( height / sqrt ( height * height + base * base ));
const double sinn = ( base / sqrt ( height * height + base * base ));
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Cover the circular base with a triangle fan... */
z0 = 0.0;
z1 = zStep;
r0 = base;
r1 = r0 - rStep;
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0,0.0,-1.0);
glVertex3d(0.0,0.0, z0 );
for (j=0; j<=slices; j++)
glVertex3d(cost[j]*r0, sint[j]*r0, z0);
glEnd();
/* Cover each stack with a quad strip, except the top stack */
for( i=0; i<stacks-1; i++ )
{
glBegin(GL_QUAD_STRIP);
for(j=0; j<=slices; j++)
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
glVertex3d(cost[j]*r0, sint[j]*r0, z0 );
glVertex3d(cost[j]*r1, sint[j]*r1, z1 );
}
z0 = z1; z1 += zStep;
r0 = r1; r1 -= rStep;
glEnd();
}
/* The top stack is covered with individual triangles */
glBegin(GL_TRIANGLES);
glNormal3d(cost[0]*sinn, sint[0]*sinn, cosn);
for (j=0; j<slices; j++)
{
glVertex3d(cost[j+0]*r0, sint[j+0]*r0, z0 );
glVertex3d(0, 0, height);
glNormal3d(cost[j+1]*sinn, sint[j+1]*sinn, cosn );
glVertex3d(cost[j+1]*r0, sint[j+1]*r0, z0 );
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a wire cone
*/
void GLUTAPIENTRY glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z = 0.0;
double r = base;
const double zStep = height/stacks;
const double rStep = base/stacks;
/* Scaling factors for vertex normals */
const double cosn = ( height / sqrt ( height * height + base * base ));
const double sinn = ( base / sqrt ( height * height + base * base ));
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Draw the stacks... */
for (i=0; i<stacks; i++)
{
glBegin(GL_LINE_LOOP);
for( j=0; j<slices; j++ )
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
glVertex3d(cost[j]*r, sint[j]*r, z );
}
glEnd();
z += zStep;
r -= rStep;
}
/* Draw the slices */
r = base;
glBegin(GL_LINES);
for (j=0; j<slices; j++)
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn );
glVertex3d(cost[j]*r, sint[j]*r, 0.0 );
glVertex3d(0.0, 0.0, height);
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a solid cylinder
*/
void GLUTAPIENTRY glutSolidCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z0,z1;
const double zStep = height/stacks;
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Cover the base and top */
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0, 0.0, -1.0 );
glVertex3d(0.0, 0.0, 0.0 );
for (j=0; j<=slices; j++)
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0);
glEnd();
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0, 0.0, 1.0 );
glVertex3d(0.0, 0.0, height);
for (j=slices; j>=0; j--)
glVertex3d(cost[j]*radius, sint[j]*radius, height);
glEnd();
/* Do the stacks */
z0 = 0.0;
z1 = zStep;
for (i=1; i<=stacks; i++)
{
if (i==stacks)
z1 = height;
glBegin(GL_QUAD_STRIP);
for (j=0; j<=slices; j++ )
{
glNormal3d(cost[j], sint[j], 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, z0 );
glVertex3d(cost[j]*radius, sint[j]*radius, z1 );
}
glEnd();
z0 = z1; z1 += zStep;
}
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a wire cylinder
*/
void GLUTAPIENTRY glutWireCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z = 0.0;
const double zStep = height/stacks;
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Draw the stacks... */
for (i=0; i<=stacks; i++)
{
if (i==stacks)
z = height;
glBegin(GL_LINE_LOOP);
for( j=0; j<slices; j++ )
{
glNormal3d(cost[j], sint[j], 0.0);
glVertex3d(cost[j]*radius, sint[j]*radius, z );
}
glEnd();
z += zStep;
}
/* Draw the slices */
glBegin(GL_LINES);
for (j=0; j<slices; j++)
{
glNormal3d(cost[j], sint[j], 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, height);
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
*
*/
void GLUTAPIENTRY glutWireTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
{
double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
double *vertex, *normal;
int i, j;
double spsi, cpsi, sphi, cphi ;
/*
* Allocate the vertices array
*/
vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
glPushMatrix();
dpsi = 2.0 * M_PI / (double)nRings ;
dphi = -2.0 * M_PI / (double)nSides ;
psi = 0.0;
for( j=0; j<nRings; j++ )
{
cpsi = cos ( psi ) ;
spsi = sin ( psi ) ;
phi = 0.0;
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
cphi = cos ( phi ) ;
sphi = sin ( phi ) ;
*(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 2) = sphi * iradius ;
*(normal + offset + 0) = cpsi * cphi ;
*(normal + offset + 1) = spsi * cphi ;
*(normal + offset + 2) = sphi ;
phi += dphi;
}
psi += dpsi;
}
for( i=0; i<nSides; i++ )
{
glBegin( GL_LINE_LOOP );
for( j=0; j<nRings; j++ )
{
int offset = 3 * ( j * nSides + i ) ;
glNormal3dv( normal + offset );
glVertex3dv( vertex + offset );
}
glEnd();
}
for( j=0; j<nRings; j++ )
{
glBegin(GL_LINE_LOOP);
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
glNormal3dv( normal + offset );
glVertex3dv( vertex + offset );
}
glEnd();
}
free ( vertex ) ;
free ( normal ) ;
glPopMatrix();
}
/*
*
*/
void GLUTAPIENTRY glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
{
double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
double *vertex, *normal;
int i, j;
double spsi, cpsi, sphi, cphi ;
/*
* Increment the number of sides and rings to allow for one more point than surface
*/
nSides ++ ;
nRings ++ ;
/*
* Allocate the vertices array
*/
vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
glPushMatrix();
dpsi = 2.0 * M_PI / (double)(nRings - 1) ;
dphi = -2.0 * M_PI / (double)(nSides - 1) ;
psi = 0.0;
for( j=0; j<nRings; j++ )
{
cpsi = cos ( psi ) ;
spsi = sin ( psi ) ;
phi = 0.0;
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
cphi = cos ( phi ) ;
sphi = sin ( phi ) ;
*(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
*(vertex + offset + 2) = sphi * iradius ;
*(normal + offset + 0) = cpsi * cphi ;
*(normal + offset + 1) = spsi * cphi ;
*(normal + offset + 2) = sphi ;
phi += dphi;
}
psi += dpsi;
}
glBegin( GL_QUADS );
for( i=0; i<nSides-1; i++ )
{
for( j=0; j<nRings-1; j++ )
{
int offset = 3 * ( j * nSides + i ) ;
glNormal3dv( normal + offset );
glVertex3dv( vertex + offset );
glNormal3dv( normal + offset + 3 );
glVertex3dv( vertex + offset + 3 );
glNormal3dv( normal + offset + 3 * nSides + 3 );
glVertex3dv( vertex + offset + 3 * nSides + 3 );
glNormal3dv( normal + offset + 3 * nSides );
glVertex3dv( vertex + offset + 3 * nSides );
}
}
glEnd();
free ( vertex ) ;
free ( normal ) ;
glPopMatrix();
}
/*
*
*/
void GLUTAPIENTRY glutWireDodecahedron( void )
{
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
* of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = 0.61803398875 and z = 1.61803398875.
*/
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
}
/*
*
*/
void GLUTAPIENTRY glutSolidDodecahedron( void )
{
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
* of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = 0.61803398875 and z = 1.61803398875.
*/
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
}
/*
*
*/
void GLUTAPIENTRY glutWireOctahedron( void )
{
#define RADIUS 1.0f
glBegin( GL_LINE_LOOP );
glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glEnd();
#undef RADIUS
}
/*
*
*/
void GLUTAPIENTRY glutSolidOctahedron( void )
{
#define RADIUS 1.0f
glBegin( GL_TRIANGLES );
glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
glEnd();
#undef RADIUS
}
/*
*
*/
void GLUTAPIENTRY glutWireTetrahedron( void )
{
/* Magic Numbers: r0 = ( 1, 0, 0 )
* r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
* r2 = ( -1/3, -sqrt(2) / 3, sqrt(6) / 3 )
* r3 = ( -1/3, -sqrt(2) / 3, -sqrt(6) / 3 )
* |r0| = |r1| = |r2| = |r3| = 1
* Distance between any two points is 2 sqrt(6) / 3
*
* Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
*/
double r0[3] = { 1.0, 0.0, 0.0 } ;
double r1[3] = { -0.333333333333, 0.942809041582, 0.0 } ;
double r2[3] = { -0.333333333333, -0.471404520791, 0.816496580928 } ;
double r3[3] = { -0.333333333333, -0.471404520791, -0.816496580928 } ;
glBegin( GL_LINE_LOOP ) ;
glNormal3d ( -1.0, 0.0, 0.0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r2 ) ;
glNormal3d ( 0.333333333333, -0.942809041582, 0.0 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r2 ) ; glVertex3dv ( r3 ) ;
glNormal3d ( 0.333333333333, 0.471404520791, -0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r1 ) ;
glNormal3d ( 0.333333333333, 0.471404520791, 0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r2 ) ;
glEnd() ;
}
/*
*
*/
void GLUTAPIENTRY glutSolidTetrahedron( void )
{
/* Magic Numbers: r0 = ( 1, 0, 0 )
* r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
* r2 = ( -1/3, -sqrt(2) / 3, sqrt(6) / 3 )
* r3 = ( -1/3, -sqrt(2) / 3, -sqrt(6) / 3 )
* |r0| = |r1| = |r2| = |r3| = 1
* Distance between any two points is 2 sqrt(6) / 3
*
* Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
*/
double r0[3] = { 1.0, 0.0, 0.0 } ;
double r1[3] = { -0.333333333333, 0.942809041582, 0.0 } ;
double r2[3] = { -0.333333333333, -0.471404520791, 0.816496580928 } ;
double r3[3] = { -0.333333333333, -0.471404520791, -0.816496580928 } ;
glBegin( GL_TRIANGLES ) ;
glNormal3d ( -1.0, 0.0, 0.0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r2 ) ;
glNormal3d ( 0.333333333333, -0.942809041582, 0.0 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r2 ) ; glVertex3dv ( r3 ) ;
glNormal3d ( 0.333333333333, 0.471404520791, -0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r1 ) ;
glNormal3d ( 0.333333333333, 0.471404520791, 0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r2 ) ;
glEnd() ;
}
/*
*
*/
double icos_r[12][3] = { { 1.0, 0.0, 0.0 },
{ 0.447213595500, 0.894427191000, 0.0 }, { 0.447213595500, 0.276393202252, 0.850650808354 }, { 0.447213595500, -0.723606797748, 0.525731112119 }, { 0.447213595500, -0.723606797748, -0.525731112119 }, { 0.447213595500, 0.276393202252, -0.850650808354 },
{ -0.447213595500, -0.894427191000, 0.0 }, { -0.447213595500, -0.276393202252, 0.850650808354 }, { -0.447213595500, 0.723606797748, 0.525731112119 }, { -0.447213595500, 0.723606797748, -0.525731112119 }, { -0.447213595500, -0.276393202252, -0.850650808354 },
{ -1.0, 0.0, 0.0 } } ;
int icos_v [20][3] = { { 0, 1, 2 }, { 0, 2, 3 }, { 0, 3, 4 }, { 0, 4, 5 }, { 0, 5, 1 },
{ 1, 8, 2 }, { 2, 7, 3 }, { 3, 6, 4 }, { 4, 10, 5 }, { 5, 9, 1 },
{ 1, 9, 8 }, { 2, 8, 7 }, { 3, 7, 6 }, { 4, 6, 10 }, { 5, 10, 9 },
{ 11, 9, 10 }, { 11, 8, 9 }, { 11, 7, 8 }, { 11, 6, 7 }, { 11, 10, 6 } } ;
void GLUTAPIENTRY glutWireIcosahedron( void )
{
int i ;
for ( i = 0; i < 20; i++ )
{
double normal[3] ;
normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3dv ( normal ) ;
glVertex3dv ( icos_r[icos_v[i][0]] ) ;
glVertex3dv ( icos_r[icos_v[i][1]] ) ;
glVertex3dv ( icos_r[icos_v[i][2]] ) ;
glEnd () ;
}
}
/*
*
*/
void GLUTAPIENTRY glutSolidIcosahedron( void )
{
int i ;
glBegin ( GL_TRIANGLES ) ;
for ( i = 0; i < 20; i++ )
{
double normal[3] ;
normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
glNormal3dv ( normal ) ;
glVertex3dv ( icos_r[icos_v[i][0]] ) ;
glVertex3dv ( icos_r[icos_v[i][1]] ) ;
glVertex3dv ( icos_r[icos_v[i][2]] ) ;
}
glEnd () ;
}
/*
*
*/
double rdod_r[14][3] = { { 0.0, 0.0, 1.0 },
{ 0.707106781187, 0.000000000000, 0.5 }, { 0.000000000000, 0.707106781187, 0.5 }, { -0.707106781187, 0.000000000000, 0.5 }, { 0.000000000000, -0.707106781187, 0.5 },
{ 0.707106781187, 0.707106781187, 0.0 }, { -0.707106781187, 0.707106781187, 0.0 }, { -0.707106781187, -0.707106781187, 0.0 }, { 0.707106781187, -0.707106781187, 0.0 },
{ 0.707106781187, 0.000000000000, -0.5 }, { 0.000000000000, 0.707106781187, -0.5 }, { -0.707106781187, 0.000000000000, -0.5 }, { 0.000000000000, -0.707106781187, -0.5 },
{ 0.0, 0.0, -1.0 } } ;
int rdod_v [12][4] = { { 0, 1, 5, 2 }, { 0, 2, 6, 3 }, { 0, 3, 7, 4 }, { 0, 4, 8, 1 },
{ 5, 10, 6, 2 }, { 6, 11, 7, 3 }, { 7, 12, 8, 4 }, { 8, 9, 5, 1 },
{ 5, 9, 13, 10 }, { 6, 10, 13, 11 }, { 7, 11, 13, 12 }, { 8, 12, 13, 9 } } ;
double rdod_n[12][3] = {
{ 0.353553390594, 0.353553390594, 0.5 }, { -0.353553390594, 0.353553390594, 0.5 }, { -0.353553390594, -0.353553390594, 0.5 }, { 0.353553390594, -0.353553390594, 0.5 },
{ 0.000000000000, 1.000000000000, 0.0 }, { -1.000000000000, 0.000000000000, 0.0 }, { 0.000000000000, -1.000000000000, 0.0 }, { 1.000000000000, 0.000000000000, 0.0 },
{ 0.353553390594, 0.353553390594, -0.5 }, { -0.353553390594, 0.353553390594, -0.5 }, { -0.353553390594, -0.353553390594, -0.5 }, { 0.353553390594, -0.353553390594, -0.5 }
} ;
void GLUTAPIENTRY glutWireRhombicDodecahedron( void )
{
int i ;
for ( i = 0; i < 12; i++ )
{
glBegin ( GL_LINE_LOOP ) ;
glNormal3dv ( rdod_n[i] ) ;
glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
glEnd () ;
}
}
/*
*
*/
void GLUTAPIENTRY glutSolidRhombicDodecahedron( void )
{
int i ;
glBegin ( GL_QUADS ) ;
for ( i = 0; i < 12; i++ )
{
glNormal3dv ( rdod_n[i] ) ;
glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
}
glEnd () ;
}
#define NUM_FACES 4
static GLdouble tetrahedron_v[4][3] = /* Vertices */
{
{ -0.5, -0.288675134595, -0.144337567297 },
{ 0.5, -0.288675134595, -0.144337567297 },
{ 0.0, 0.577350269189, -0.144337567297 },
{ 0.0, 0.0, 0.672159013631 }
} ;
static GLint tetrahedron_i[4][3] = /* Vertex indices */
{
{ 0, 1, 2 }, { 0, 2, 3 }, { 0, 3, 1 }, { 1, 3, 2 }
} ;
static GLdouble tetrahedron_n[4][3] = /* Normals */
{
{ 0.0, 0.0, -1.0 },
{ -0.816496580928, 0.471404520791, 0.333333333333 },
{ 0.0, -0.942809041582, 0.333333333333 },
{ 0.816496580928, 0.471404520791, 0.333333333333 }
} ;
void GLUTAPIENTRY glutWireSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
{
int i, j ;
if ( num_levels == 0 )
{
for ( i = 0 ; i < NUM_FACES ; i++ )
{
glBegin ( GL_LINE_LOOP ) ;
glNormal3dv ( tetrahedron_n[i] ) ;
for ( j = 0; j < 3; j++ )
{
double x = offset[0] + scale * tetrahedron_v[tetrahedron_i[i][j]][0] ;
double y = offset[1] + scale * tetrahedron_v[tetrahedron_i[i][j]][1] ;
double z = offset[2] + scale * tetrahedron_v[tetrahedron_i[i][j]][2] ;
glVertex3d ( x, y, z ) ;
}
glEnd () ;
}
}
else
{
GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
num_levels -- ;
scale /= 2.0 ;
local_offset[0] = offset[0] + scale * tetrahedron_v[0][0] ;
local_offset[1] = offset[1] + scale * tetrahedron_v[0][1] ;
local_offset[2] = offset[2] + scale * tetrahedron_v[0][2] ;
glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
local_offset[0] += scale ;
glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
local_offset[0] -= 0.5 * scale ;
local_offset[1] += 0.866025403784 * scale ;
glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
local_offset[1] -= 0.577350269189 * scale ;
local_offset[2] += 0.816496580928 * scale ;
glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
}
}
void GLUTAPIENTRY glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
{
int i, j ;
if ( num_levels == 0 )
{
glBegin ( GL_TRIANGLES ) ;
for ( i = 0 ; i < NUM_FACES ; i++ )
{
glNormal3dv ( tetrahedron_n[i] ) ;
for ( j = 0; j < 3; j++ )
{
double x = offset[0] + scale * tetrahedron_v[tetrahedron_i[i][j]][0] ;
double y = offset[1] + scale * tetrahedron_v[tetrahedron_i[i][j]][1] ;
double z = offset[2] + scale * tetrahedron_v[tetrahedron_i[i][j]][2] ;
glVertex3d ( x, y, z ) ;
}
}
glEnd () ;
}
else
{
GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
num_levels -- ;
scale /= 2.0 ;
local_offset[0] = offset[0] + scale * tetrahedron_v[0][0] ;
local_offset[1] = offset[1] + scale * tetrahedron_v[0][1] ;
local_offset[2] = offset[2] + scale * tetrahedron_v[0][2] ;
glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
local_offset[0] += scale ;
glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
local_offset[0] -= 0.5 * scale ;
local_offset[1] += 0.866025403784 * scale ;
glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
local_offset[1] -= 0.577350269189 * scale ;
local_offset[2] += 0.816496580928 * scale ;
glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
}
}
#undef NUM_FACES
/*** END OF FILE ***/