blob: a1240639f4ee8db2d310c3e011f7c0a3deddbce2 [file] [log] [blame]
/* -*- c-basic-offset: 4 -*- */
/*
* Copyright © 2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/** @file intel_decode.c
* This file contains code to print out batchbuffer contents in a
* human-readable format.
*
* The current version only supports i915 packets, and only pretty-prints a
* subset of them. The intention is for it to make just a best attempt to
* decode, but never crash in the process.
*/
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include "intel_decode.h"
#include "intel_chipset.h"
#define BUFFER_FAIL(_count, _len, _name) do { \
fprintf(out, "Buffer size too small in %s (%d < %d)\n", \
(_name), (_count), (_len)); \
(*failures)++; \
return count; \
} while (0)
static FILE *out;
static uint32_t saved_s2 = 0, saved_s4 = 0;
static char saved_s2_set = 0, saved_s4_set = 0;
static float
int_as_float(uint32_t intval)
{
union intfloat {
uint32_t i;
float f;
} uval;
uval.i = intval;
return uval.f;
}
static void
instr_out(uint32_t *data, uint32_t hw_offset, unsigned int index,
char *fmt, ...)
{
va_list va;
fprintf(out, "0x%08x: 0x%08x:%s ", hw_offset + index * 4, data[index],
index == 0 ? "" : " ");
va_start(va, fmt);
vfprintf(out, fmt, va);
va_end(va);
}
static int
decode_mi(uint32_t *data, int count, uint32_t hw_offset, int *failures)
{
unsigned int opcode;
struct {
uint32_t opcode;
int min_len;
int max_len;
char *name;
} opcodes_mi[] = {
{ 0x08, 1, 1, "MI_ARB_ON_OFF" },
{ 0x0a, 1, 1, "MI_BATCH_BUFFER_END" },
{ 0x31, 2, 2, "MI_BATCH_BUFFER_START" },
{ 0x14, 3, 3, "MI_DISPLAY_BUFFER_INFO" },
{ 0x04, 1, 1, "MI_FLUSH" },
{ 0x22, 3, 3, "MI_LOAD_REGISTER_IMM" },
{ 0x13, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" },
{ 0x12, 2, 2, "MI_LOAD_SCAN_LINES_INCL" },
{ 0x00, 1, 1, "MI_NOOP" },
{ 0x11, 2, 2, "MI_OVERLAY_FLIP" },
{ 0x07, 1, 1, "MI_REPORT_HEAD" },
{ 0x18, 2, 2, "MI_SET_CONTEXT" },
{ 0x20, 3, 4, "MI_STORE_DATA_IMM" },
{ 0x21, 3, 4, "MI_STORE_DATA_INDEX" },
{ 0x24, 3, 3, "MI_STORE_REGISTER_MEM" },
{ 0x02, 1, 1, "MI_USER_INTERRUPT" },
{ 0x03, 1, 1, "MI_WAIT_FOR_EVENT" },
};
for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]);
opcode++) {
if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) {
unsigned int len = 1, i;
instr_out(data, hw_offset, 0, "%s\n", opcodes_mi[opcode].name);
if (opcodes_mi[opcode].max_len > 1) {
len = (data[0] & 0x000000ff) + 2;
if (len < opcodes_mi[opcode].min_len ||
len > opcodes_mi[opcode].max_len)
{
fprintf(out, "Bad length in %s\n",
opcodes_mi[opcode].name);
}
}
for (i = 1; i < len; i++) {
if (i >= count)
BUFFER_FAIL(count, len, opcodes_mi[opcode].name);
instr_out(data, hw_offset, i, "dword %d\n", i);
}
return len;
}
}
instr_out(data, hw_offset, 0, "MI UNKNOWN\n");
(*failures)++;
return 1;
}
static int
decode_2d(uint32_t *data, int count, uint32_t hw_offset, int *failures)
{
unsigned int opcode, len;
char *format = NULL;
struct {
uint32_t opcode;
int min_len;
int max_len;
char *name;
} opcodes_2d[] = {
{ 0x40, 5, 5, "COLOR_BLT" },
{ 0x43, 6, 6, "SRC_COPY_BLT" },
{ 0x01, 8, 8, "XY_SETUP_BLT" },
{ 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" },
{ 0x03, 3, 3, "XY_SETUP_CLIP_BLT" },
{ 0x24, 2, 2, "XY_PIXEL_BLT" },
{ 0x25, 3, 3, "XY_SCANLINES_BLT" },
{ 0x26, 4, 4, "Y_TEXT_BLT" },
{ 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" },
{ 0x50, 6, 6, "XY_COLOR_BLT" },
{ 0x51, 6, 6, "XY_PAT_BLT" },
{ 0x76, 8, 8, "XY_PAT_CHROMA_BLT" },
{ 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" },
{ 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" },
{ 0x52, 9, 9, "XY_MONO_PAT_BLT" },
{ 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" },
{ 0x53, 8, 8, "XY_SRC_COPY_BLT" },
{ 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" },
{ 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" },
{ 0x55, 9, 9, "XY_FULL_BLT" },
{ 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" },
{ 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" },
{ 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" },
{ 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" },
{ 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" },
};
switch ((data[0] & 0x1fc00000) >> 22) {
case 0x50:
instr_out(data, hw_offset, 0,
"XY_COLOR_BLT (rgb %sabled, alpha %sabled)\n",
(data[0] & (1 << 20)) ? "en" : "dis",
(data[0] & (1 << 21)) ? "en" : "dis");
len = (data[0] & 0x000000ff) + 2;
if (len != 6)
fprintf(out, "Bad count in XY_COLOR_BLT\n");
if (count < 6)
BUFFER_FAIL(count, len, "XY_COLOR_BLT");
switch ((data[1] >> 24) & 0x3) {
case 0:
format="8";
break;
case 1:
format="565";
break;
case 2:
format="1555";
break;
case 3:
format="8888";
break;
}
instr_out(data, hw_offset, 1, "format %s, pitch %d, "
"clipping %sabled\n", format,
data[1] & 0xffff, data[1] & (1 << 30) ? "en" : "dis");
instr_out(data, hw_offset, 2, "(%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(data, hw_offset, 3, "(%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
instr_out(data, hw_offset, 4, "offset 0x%08x\n", data[4]);
instr_out(data, hw_offset, 5, "color\n");
return len;
case 0x53:
instr_out(data, hw_offset, 0,
"XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled)\n",
(data[0] & (1 << 20)) ? "en" : "dis",
(data[0] & (1 << 21)) ? "en" : "dis");
len = (data[0] & 0x000000ff) + 2;
if (len != 8)
fprintf(out, "Bad count in XY_SRC_COPY_BLT\n");
if (count < 8)
BUFFER_FAIL(count, len, "XY_SRC_COPY_BLT");
switch ((data[1] >> 24) & 0x3) {
case 0:
format="8";
break;
case 1:
format="565";
break;
case 2:
format="1555";
break;
case 3:
format="8888";
break;
}
instr_out(data, hw_offset, 1, "format %s, dst pitch %d, "
"clipping %sabled\n", format,
data[1] & 0xffff, data[1] & (1 << 30) ? "en" : "dis");
instr_out(data, hw_offset, 2, "dst (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(data, hw_offset, 3, "dst (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(data, hw_offset, 4, "dst offset 0x%08x\n", data[4]);
instr_out(data, hw_offset, 5, "src (%d,%d)\n",
data[5] & 0xffff, data[5] >> 16);
instr_out(data, hw_offset, 6, "src pitch %d\n",
data[6] & 0xffff);
instr_out(data, hw_offset, 7, "src offset 0x%08x\n", data[7]);
return len;
}
for (opcode = 0; opcode < sizeof(opcodes_2d) / sizeof(opcodes_2d[0]);
opcode++) {
if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) {
unsigned int i;
len = 1;
instr_out(data, hw_offset, 0, "%s\n", opcodes_2d[opcode].name);
if (opcodes_2d[opcode].max_len > 1) {
len = (data[0] & 0x000000ff) + 2;
if (len < opcodes_2d[opcode].min_len ||
len > opcodes_2d[opcode].max_len)
{
fprintf(out, "Bad count in %s\n", opcodes_2d[opcode].name);
}
}
for (i = 1; i < len; i++) {
if (i >= count)
BUFFER_FAIL(count, len, opcodes_2d[opcode].name);
instr_out(data, hw_offset, i, "dword %d\n", i);
}
return len;
}
}
instr_out(data, hw_offset, 0, "2D UNKNOWN\n");
(*failures)++;
return 1;
}
static int
decode_3d_1c(uint32_t *data, int count, uint32_t hw_offset, int *failures)
{
switch ((data[0] & 0x00f80000) >> 19) {
case 0x11:
instr_out(data, hw_offset, 0, "3DSTATE_DEPTH_SUBRECTANGLE_DISALBE\n");
return 1;
case 0x10:
instr_out(data, hw_offset, 0, "3DSTATE_SCISSOR_ENABLE\n");
return 1;
}
instr_out(data, hw_offset, 0, "3D UNKNOWN\n");
(*failures)++;
return 1;
}
static int
decode_3d_1d(uint32_t *data, int count, uint32_t hw_offset, int *failures)
{
unsigned int len, i, c, opcode, word, map, sampler, instr;
struct {
uint32_t opcode;
int min_len;
int max_len;
char *name;
} opcodes_3d_1d[] = {
{ 0x8e, 3, 3, "3DSTATE_BUFFER_INFO" },
{ 0x86, 4, 4, "3DSTATE_CHROMA_KEY" },
{ 0x9c, 1, 1, "3DSTATE_CLEAR_PARAMETERS" },
{ 0x88, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" },
{ 0x99, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" },
{ 0x9a, 2, 2, "3DSTATE_DEFAULT_SPECULAR" },
{ 0x98, 2, 2, "3DSTATE_DEFAULT_Z" },
{ 0x97, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" },
{ 0x85, 2, 2, "3DSTATE_DEST_BUFFER_VARIABLES" },
{ 0x80, 5, 5, "3DSTATE_DRAWING_RECTANGLE" },
{ 0x8e, 3, 3, "3DSTATE_BUFFER_INFO" },
{ 0x9d, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" },
{ 0x9e, 4, 4, "3DSTATE_MONO_FILTER" },
{ 0x89, 4, 4, "3DSTATE_FOG_MODE" },
{ 0x8f, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" },
{ 0x81, 3, 3, "3DSTATE_SCISSOR_RECTANGLE" },
{ 0x83, 2, 2, "3DSTATE_SPAN_STIPPLE" },
};
switch ((data[0] & 0x00ff0000) >> 16) {
case 0x07:
/* This instruction is unusual. A 0 length means just 1 DWORD instead of
* 2. The 0 length is specified in one place to be unsupported, but
* stated to be required in another, and 0 length LOAD_INDIRECTs appear
* to cause no harm at least.
*/
instr_out(data, hw_offset, 0, "3DSTATE_LOAD_INDIRECT\n");
len = (data[0] & 0x000000ff) + 1;
i = 1;
if (data[0] & (0x01 << 8)) {
if (i + 2 >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT");
instr_out(data, hw_offset, i++, "SIS.0\n");
instr_out(data, hw_offset, i++, "SIS.1\n");
}
if (data[0] & (0x02 << 8)) {
if (i + 1 >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT");
instr_out(data, hw_offset, i++, "DIS.0\n");
}
if (data[0] & (0x04 << 8)) {
if (i + 2 >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT");
instr_out(data, hw_offset, i++, "SSB.0\n");
instr_out(data, hw_offset, i++, "SSB.1\n");
}
if (data[0] & (0x08 << 8)) {
if (i + 2 >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT");
instr_out(data, hw_offset, i++, "MSB.0\n");
instr_out(data, hw_offset, i++, "MSB.1\n");
}
if (data[0] & (0x10 << 8)) {
if (i + 2 >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT");
instr_out(data, hw_offset, i++, "PSP.0\n");
instr_out(data, hw_offset, i++, "PSP.1\n");
}
if (data[0] & (0x20 << 8)) {
if (i + 2 >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT");
instr_out(data, hw_offset, i++, "PSC.0\n");
instr_out(data, hw_offset, i++, "PSC.1\n");
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n");
(*failures)++;
return len;
}
return len;
case 0x04:
instr_out(data, hw_offset, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_1\n");
len = (data[0] & 0x0000000f) + 2;
i = 1;
for (word = 0; word <= 7; word++) {
if (data[0] & (1 << (4 + word))) {
if (i >= count)
BUFFER_FAIL(count, len, "3DSTATE_LOAD_STATE_IMMEDIATE_1");
/* save vertex state for decode */
if (word == 2) {
saved_s2_set = 1;
saved_s2 = data[i];
}
if (word == 4) {
saved_s4_set = 1;
saved_s4 = data[i];
}
instr_out(data, hw_offset, i++, "S%d\n", word);
}
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n");
(*failures)++;
}
return len;
case 0x00:
instr_out(data, hw_offset, 0, "3DSTATE_MAP_STATE\n");
len = (data[0] & 0x0000003f) + 2;
i = 1;
for (map = 0; map <= 15; map++) {
if (data[1] & (1 << map)) {
if (i + 3 >= count)
BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE");
instr_out(data, hw_offset, i++, "map %d MS2\n", map);
instr_out(data, hw_offset, i++, "map %d MS3\n", map);
instr_out(data, hw_offset, i++, "map %d MS4\n", map);
}
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n");
(*failures)++;
return len;
}
return len;
case 0x06:
instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_CONSTANTS\n");
len = (data[0] & 0x000000ff) + 2;
i = 1;
for (c = 0; c <= 31; c++) {
if (data[1] & (1 << c)) {
if (i + 4 >= count)
BUFFER_FAIL(count, len, "3DSTATE_PIXEL_SHADER_CONSTANTS");
instr_out(data, hw_offset, i, "C%d.X = %f\n",
c, int_as_float(data[i]));
i++;
instr_out(data, hw_offset, i, "C%d.Y = %f\n",
c, int_as_float(data[i]));
i++;
instr_out(data, hw_offset, i, "C%d.Z = %f\n",
c, int_as_float(data[i]));
i++;
instr_out(data, hw_offset, i, "C%d.W = %f\n",
c, int_as_float(data[i]));
i++;
}
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n");
(*failures)++;
}
return len;
case 0x05:
instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n");
len = (data[0] & 0x000000ff) + 2;
if ((len - 1) % 3 != 0 || len > 370) {
fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n");
(*failures)++;
}
i = 1;
for (instr = 0; instr < (len - 1) / 3; instr++) {
if (i + 3 >= count)
BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE");
instr_out(data, hw_offset, i++, "PS%03x\n", instr);
instr_out(data, hw_offset, i++, "PS%03x\n", instr);
instr_out(data, hw_offset, i++, "PS%03x\n", instr);
}
return len;
case 0x01:
instr_out(data, hw_offset, 0, "3DSTATE_SAMPLER_STATE\n");
len = (data[0] & 0x0000003f) + 2;
i = 1;
for (sampler = 0; sampler <= 15; sampler++) {
if (data[1] & (1 << sampler)) {
if (i + 3 >= count)
BUFFER_FAIL(count, len, "3DSTATE_SAMPLER_STATE");
instr_out(data, hw_offset, i++, "sampler %d SS2\n",
sampler);
instr_out(data, hw_offset, i++, "sampler %d SS3\n",
sampler);
instr_out(data, hw_offset, i++, "sampler %d SS4\n",
sampler);
}
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n");
(*failures)++;
}
return len;
}
for (opcode = 0; opcode < sizeof(opcodes_3d_1d) / sizeof(opcodes_3d_1d[0]);
opcode++)
{
if (((data[0] & 0x00ff0000) >> 16) == opcodes_3d_1d[opcode].opcode) {
len = 1;
instr_out(data, hw_offset, 0, "%s\n", opcodes_3d_1d[opcode].name);
if (opcodes_3d_1d[opcode].max_len > 1) {
len = (data[0] & 0x0000ffff) + 2;
if (len < opcodes_3d_1d[opcode].min_len ||
len > opcodes_3d_1d[opcode].max_len)
{
fprintf(out, "Bad count in %s\n",
opcodes_3d_1d[opcode].name);
(*failures)++;
}
}
for (i = 1; i < len; i++) {
if (i >= count)
BUFFER_FAIL(count, len, opcodes_3d_1d[opcode].name);
instr_out(data, hw_offset, i, "dword %d\n", i);
}
return len;
}
}
instr_out(data, hw_offset, 0, "3D UNKNOWN\n");
(*failures)++;
return 1;
}
static int
decode_3d_primitive(uint32_t *data, int count, uint32_t hw_offset,
int *failures)
{
char immediate = (data[0] & (1 << 23)) == 0;
unsigned int len, i;
char *primtype;
switch ((data[0] >> 18) & 0xf) {
case 0x0: primtype = "TRILIST"; break;
case 0x1: primtype = "TRISTRIP"; break;
case 0x2: primtype = "TRISTRIP_REVERSE"; break;
case 0x3: primtype = "TRIFAN"; break;
case 0x4: primtype = "POLYGON"; break;
case 0x5: primtype = "LINELIST"; break;
case 0x6: primtype = "LINESTRIP"; break;
case 0x7: primtype = "RECTLIST"; break;
case 0x8: primtype = "POINTLIST"; break;
case 0x9: primtype = "DIB"; break;
case 0xa: primtype = "CLEAR_RECT"; break;
default: primtype = "unknown"; break;
}
/* XXX: 3DPRIM_DIB not supported */
if (immediate) {
len = (data[0] & 0x0003ffff) + 2;
instr_out(data, hw_offset, 0, "3DPRIMITIVE inline %s\n", primtype);
if (count < len)
BUFFER_FAIL(count, len, "3DPRIMITIVE inline");
if (!saved_s2_set || !saved_s4_set) {
fprintf(out, "unknown vertex format\n");
for (i = 1; i < len; i++) {
instr_out(data, hw_offset, i,
" vertex data (%f float)\n",
int_as_float(data[i]));
}
} else {
unsigned int vertex = 0;
for (i = 1; i < len;) {
unsigned int tc;
#define VERTEX_OUT(fmt, ...) do { \
if (i < len) \
instr_out(data, hw_offset, i, " V%d."fmt"\n", vertex, __VA_ARGS__); \
else \
fprintf(out, " missing data in V%d\n", vertex); \
i++; \
} while (0)
VERTEX_OUT("X = %f", int_as_float(data[i]));
VERTEX_OUT("Y = %f", int_as_float(data[i]));
switch (saved_s4 >> 6 & 0x7) {
case 0x1:
VERTEX_OUT("Z = %f", int_as_float(data[i]));
break;
case 0x2:
VERTEX_OUT("Z = %f", int_as_float(data[i]));
VERTEX_OUT("W = %f", int_as_float(data[i]));
break;
case 0x3:
break;
case 0x4:
VERTEX_OUT("W = %f", int_as_float(data[i]));
break;
default:
fprintf(out, "bad S4 position mask\n");
}
if (saved_s4 & (1 << 10)) {
VERTEX_OUT("color = (A=0x%02x, R=0x%02x, G=0x%02x, "
"B=0x%02x)",
data[i] >> 24,
(data[i] >> 16) & 0xff,
(data[i] >> 8) & 0xff,
data[i] & 0xff);
}
if (saved_s4 & (1 << 11)) {
VERTEX_OUT("spec = (A=0x%02x, R=0x%02x, G=0x%02x, "
"B=0x%02x)",
data[i] >> 24,
(data[i] >> 16) & 0xff,
(data[i] >> 8) & 0xff,
data[i] & 0xff);
}
if (saved_s4 & (1 << 12))
VERTEX_OUT("width = 0x%08x)", data[i]);
for (tc = 0; tc <= 7; tc++) {
switch ((saved_s2 >> (tc * 4)) & 0xf) {
case 0x0:
VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i]));
VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i]));
break;
case 0x1:
VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i]));
VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i]));
VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data[i]));
break;
case 0x2:
VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i]));
VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i]));
VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data[i]));
VERTEX_OUT("T%d.W = %f", tc, int_as_float(data[i]));
break;
case 0x3:
VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i]));
break;
case 0x4:
VERTEX_OUT("T%d.XY = 0x%08x half-float", tc, data[i]);
break;
case 0x5:
VERTEX_OUT("T%d.XY = 0x%08x half-float", tc, data[i]);
VERTEX_OUT("T%d.ZW = 0x%08x half-float", tc, data[i]);
break;
case 0xf:
break;
default:
fprintf(out, "bad S2.T%d format\n", tc);
}
}
vertex++;
}
}
} else {
/* indirect vertices */
len = data[0] & 0x0000ffff; /* index count */
if (data[0] & (1 << 17)) {
/* random vertex access */
if (count < (len + 1) / 2 + 1) {
BUFFER_FAIL(count, (len + 1) / 2 + 1,
"3DPRIMITIVE random indirect");
}
instr_out(data, hw_offset, 0,
"3DPRIMITIVE random indirect %s (%d)\n", primtype, len);
if (len == 0) {
/* vertex indices continue until 0xffff is found */
for (i = 1; i < count; i++) {
if ((data[i] & 0xffff) == 0xffff) {
instr_out(data, hw_offset, i,
" indices: (terminator)\n");
return i;
} else if ((data[i] >> 16) == 0xffff) {
instr_out(data, hw_offset, i,
" indices: 0x%04x, "
"(terminator)\n",
data[i] & 0xffff);
return i;
} else {
instr_out(data, hw_offset, i,
" indices: 0x%04x, 0x%04x\n",
data[i] & 0xffff, data[i] >> 16);
}
}
fprintf(out,
"3DPRIMITIVE: no terminator found in index buffer\n");
(*failures)++;
return count;
} else {
/* fixed size vertex index buffer */
for (i = 0; i < len; i += 2) {
if (i * 2 == len - 1) {
instr_out(data, hw_offset, i,
" indices: 0x%04x\n",
data[i] & 0xffff);
} else {
instr_out(data, hw_offset, i,
" indices: 0x%04x, 0x%04x\n",
data[i] & 0xffff, data[i] >> 16);
}
}
}
return (len + 1) / 2 + 1;
} else {
/* sequential vertex access */
if (count < 2)
BUFFER_FAIL(count, 2, "3DPRIMITIVE seq indirect");
instr_out(data, hw_offset, 0,
"3DPRIMITIVE sequential indirect %s, %d starting from "
"%d\n", primtype, len, data[1] & 0xffff);
instr_out(data, hw_offset, 1, " start\n");
return 2;
}
}
return len;
}
static int
decode_3d(uint32_t *data, int count, uint32_t hw_offset, int *failures)
{
unsigned int opcode;
struct {
uint32_t opcode;
int min_len;
int max_len;
char *name;
} opcodes_3d[] = {
{ 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" },
{ 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" },
{ 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" },
{ 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" },
{ 0x15, 1, 1, "3DSTATE_FOG_COLOR" },
{ 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" },
{ 0x0d, 1, 1, "3DSTATE_MODES_4" },
{ 0x0c, 1, 1, "3DSTATE_MODES_5" },
{ 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" },
};
switch ((data[0] & 0x1f000000) >> 24) {
case 0x1f:
return decode_3d_primitive(data, count, hw_offset, failures);
case 0x1d:
return decode_3d_1d(data, count, hw_offset, failures);
case 0x1c:
return decode_3d_1c(data, count, hw_offset, failures);
}
for (opcode = 0; opcode < sizeof(opcodes_3d) / sizeof(opcodes_3d[0]);
opcode++) {
if ((data[0] & 0x1f000000) >> 24 == opcodes_3d[opcode].opcode) {
unsigned int len = 1, i;
instr_out(data, hw_offset, 0, "%s\n", opcodes_3d[opcode].name);
if (opcodes_3d[opcode].max_len > 1) {
len = (data[0] & 0xff) + 2;
if (len < opcodes_3d[opcode].min_len ||
len > opcodes_3d[opcode].max_len)
{
fprintf(out, "Bad count in %s\n", opcodes_3d[opcode].name);
}
}
for (i = 1; i < len; i++) {
if (i >= count)
BUFFER_FAIL(count, len, opcodes_3d[opcode].name);
instr_out(data, hw_offset, i, "dword %d\n", i);
}
return len;
}
}
instr_out(data, hw_offset, 0, "3D UNKNOWN\n");
(*failures)++;
return 1;
}
static const char *
get_965_surfacetype(unsigned int surfacetype)
{
switch (surfacetype) {
case 0: return "1D";
case 1: return "2D";
case 2: return "3D";
case 3: return "CUBE";
case 4: return "BUFFER";
case 7: return "NULL";
default: return "unknown";
}
}
static const char *
get_965_depthformat(unsigned int depthformat)
{
switch (depthformat) {
case 0: return "s8_z24float";
case 1: return "z32float";
case 2: return "z24s8";
case 5: return "z16";
default: return "unknown";
}
}
static int
decode_3d_965(uint32_t *data, int count, uint32_t hw_offset, int *failures)
{
unsigned int opcode, len;
struct {
uint32_t opcode;
int min_len;
int max_len;
char *name;
} opcodes_3d[] = {
{ 0x6000, 3, 3, "URB_FENCE" },
{ 0x6001, 2, 2, "CS_URB_STATE" },
{ 0x6002, 2, 2, "CONSTANT_BUFFER" },
{ 0x6101, 6, 6, "STATE_BASE_ADDRESS" },
{ 0x6102, 2, 2 , "STATE_SIP" },
{ 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x680b, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x6904, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x7800, 7, 7, "3DSTATE_PIPELINED_POINTERS" },
{ 0x7801, 6, 6, "3DSTATE_BINDING_TABLE_POINTERS" },
{ 0x780b, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x7808, 5, 257, "3DSTATE_VERTEX_BUFFERS" },
{ 0x7809, 3, 256, "3DSTATE_VERTEX_ELEMENTS" },
/* 0x7808: 3DSTATE_VERTEX_BUFFERS */
/* 0x7809: 3DSTATE_VERTEX_ELEMENTS */
{ 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" },
{ 0x7901, 5, 5, "3DSTATE_CONSTANT_COLOR" },
{ 0x7905, 5, 7, "3DSTATE_DEPTH_BUFFER" },
{ 0x7906, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" },
{ 0x7907, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" },
{ 0x7908, 3, 3, "3DSTATE_LINE_STIPPLE" },
{ 0x7909, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" },
{ 0x790a, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" },
{ 0x7b00, 6, 6, "3DPRIMITIVE" },
};
len = (data[0] & 0x0000ffff) + 2;
switch ((data[0] & 0xffff0000) >> 16) {
case 0x6101:
if (len != 6)
fprintf(out, "Bad count in STATE_BASE_ADDRESS\n");
if (count < 6)
BUFFER_FAIL(count, len, "STATE_BASE_ADDRESS");
instr_out(data, hw_offset, 0,
"STATE_BASE_ADDRESS\n");
if (data[1] & 1) {
instr_out(data, hw_offset, 1, "General state at 0x%08x\n",
data[1] & ~1);
} else
instr_out(data, hw_offset, 1, "General state not updated\n");
if (data[2] & 1) {
instr_out(data, hw_offset, 2, "Surface state at 0x%08x\n",
data[2] & ~1);
} else
instr_out(data, hw_offset, 2, "Surface state not updated\n");
if (data[3] & 1) {
instr_out(data, hw_offset, 3, "Indirect state at 0x%08x\n",
data[3] & ~1);
} else
instr_out(data, hw_offset, 3, "Indirect state not updated\n");
if (data[4] & 1) {
instr_out(data, hw_offset, 4, "General state upper bound 0x%08x\n",
data[4] & ~1);
} else
instr_out(data, hw_offset, 4, "General state not updated\n");
if (data[5] & 1) {
instr_out(data, hw_offset, 5, "Indirect state upper bound 0x%08x\n",
data[5] & ~1);
} else
instr_out(data, hw_offset, 5, "Indirect state not updated\n");
return len;
case 0x7800:
if (len != 7)
fprintf(out, "Bad count in 3DSTATE_PIPELINED_POINTERS\n");
if (count < 7)
BUFFER_FAIL(count, len, "3DSTATE_PIPELINED_POINTERS");
instr_out(data, hw_offset, 0,
"3DSTATE_PIPELINED_POINTERS\n");
instr_out(data, hw_offset, 1, "VS state\n");
instr_out(data, hw_offset, 2, "GS state\n");
instr_out(data, hw_offset, 3, "Clip state\n");
instr_out(data, hw_offset, 4, "SF state\n");
instr_out(data, hw_offset, 5, "WM state\n");
instr_out(data, hw_offset, 6, "CC state\n");
return len;
case 0x7801:
if (len != 6)
fprintf(out, "Bad count in 3DSTATE_BINDING_TABLE_POINTERS\n");
if (count < 6)
BUFFER_FAIL(count, len, "3DSTATE_BINDING_TABLE_POINTERS");
instr_out(data, hw_offset, 0,
"3DSTATE_BINDING_TABLE_POINTERS\n");
instr_out(data, hw_offset, 1, "VS binding table\n");
instr_out(data, hw_offset, 2, "GS binding table\n");
instr_out(data, hw_offset, 3, "Clip binding table\n");
instr_out(data, hw_offset, 4, "SF binding table\n");
instr_out(data, hw_offset, 5, "WM binding table\n");
return len;
case 0x7900:
if (len != 4)
fprintf(out, "Bad count in 3DSTATE_DRAWING_RECTANGLE\n");
if (count < 4)
BUFFER_FAIL(count, len, "3DSTATE_DRAWING_RECTANGLE");
instr_out(data, hw_offset, 0,
"3DSTATE_DRAWING_RECTANGLE\n");
instr_out(data, hw_offset, 1, "top left: %d,%d\n",
data[1] & 0xffff,
(data[1] >> 16) & 0xffff);
instr_out(data, hw_offset, 2, "bottom right: %d,%d\n",
data[2] & 0xffff,
(data[2] >> 16) & 0xffff);
instr_out(data, hw_offset, 3, "origin: %d,%d\n",
(int)data[3] & 0xffff,
((int)data[3] >> 16) & 0xffff);
return len;
case 0x7905:
if (len != 5)
fprintf(out, "Bad count in 3DSTATE_DEPTH_BUFFER\n");
if (count < 5)
BUFFER_FAIL(count, len, "3DSTATE_DEPTH_BUFFER");
instr_out(data, hw_offset, 0,
"3DSTATE_DEPTH_BUFFER\n");
instr_out(data, hw_offset, 1, "%s, %s, pitch = %d bytes, %stiled\n",
get_965_surfacetype(data[1] >> 29),
get_965_depthformat((data[1] >> 18) & 0x7),
(data[1] & 0x0001ffff) + 1,
data[1] & (1 << 27) ? "" : "not ");
instr_out(data, hw_offset, 2, "depth offset\n");
instr_out(data, hw_offset, 3, "%dx%d\n",
((data[3] & 0x0007ffc0) >> 6) + 1,
((data[3] & 0xfff80000) >> 19) + 1);
instr_out(data, hw_offset, 4, "volume depth\n");
return len;
}
for (opcode = 0; opcode < sizeof(opcodes_3d) / sizeof(opcodes_3d[0]);
opcode++) {
if ((data[0] & 0xffff0000) >> 16 == opcodes_3d[opcode].opcode) {
unsigned int i;
len = 1;
instr_out(data, hw_offset, 0, "%s\n", opcodes_3d[opcode].name);
if (opcodes_3d[opcode].max_len > 1) {
len = (data[0] & 0xff) + 2;
if (len < opcodes_3d[opcode].min_len ||
len > opcodes_3d[opcode].max_len)
{
fprintf(out, "Bad count in %s\n", opcodes_3d[opcode].name);
}
}
for (i = 1; i < len; i++) {
if (i >= count)
BUFFER_FAIL(count, len, opcodes_3d[opcode].name);
instr_out(data, hw_offset, i, "dword %d\n", i);
}
return len;
}
}
instr_out(data, hw_offset, 0, "3D UNKNOWN\n");
(*failures)++;
return 1;
}
/**
* Decodes an i830-i915 batch buffer, writing the output to stdout.
*
* \param data batch buffer contents
* \param count number of DWORDs to decode in the batch buffer
* \param hw_offset hardware address for the buffer
*/
int
intel_decode(uint32_t *data, int count, uint32_t hw_offset, uint32_t devid)
{
int index = 0;
int failures = 0;
out = stderr;
while (index < count) {
switch ((data[index] & 0xe0000000) >> 29) {
case 0x0:
index += decode_mi(data + index, count - index,
hw_offset + index * 4, &failures);
break;
case 0x2:
index += decode_2d(data + index, count - index,
hw_offset + index * 4, &failures);
break;
case 0x3:
if (IS_965(devid)) {
index += decode_3d_965(data + index, count - index,
hw_offset + index * 4, &failures);
} else {
index += decode_3d(data + index, count - index,
hw_offset + index * 4, &failures);
}
break;
default:
instr_out(data, hw_offset, index, "UNKNOWN\n");
failures++;
index++;
break;
}
fflush(out);
}
return failures;
}
void intel_decode_context_reset(void)
{
saved_s2_set = 0;
saved_s4_set = 1;
}