blob: d19832f86181eecf202a04310322b35188ce06f0 [file] [log] [blame]
/*
Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
The Weather Channel (TM) funded Tungsten Graphics to develop the
initial release of the Radeon 8500 driver under the XFree86 license.
This notice must be preserved.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice (including the
next paragraph) shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************/
/**
* \file
*
* \author Keith Whitwell <keith@tungstengraphics.com>
*
* \todo Enable R300 texture tiling code?
*/
#include "glheader.h"
#include "imports.h"
#include "context.h"
#include "macros.h"
#include "texformat.h"
#include "teximage.h"
#include "texobj.h"
#include "enums.h"
#include "r300_context.h"
#include "r300_state.h"
#include "r300_ioctl.h"
#include "radeon_ioctl.h"
#include "r300_tex.h"
#include "r300_reg.h"
#define VALID_FORMAT(f) ( ((f) <= MESA_FORMAT_RGBA_DXT5 \
|| ((f) >= MESA_FORMAT_RGBA_FLOAT32 && \
(f) <= MESA_FORMAT_INTENSITY_FLOAT16)) \
&& tx_table[f].flag )
#define _ASSIGN(entry, format) \
[ MESA_FORMAT_ ## entry ] = { format, 0, 1}
/*
* Note that the _REV formats are the same as the non-REV formats. This is
* because the REV and non-REV formats are identical as a byte string, but
* differ when accessed as 16-bit or 32-bit words depending on the endianness of
* the host. Since the textures are transferred to the R300 as a byte string
* (i.e. without any byte-swapping), the R300 sees the REV and non-REV formats
* identically. -- paulus
*/
static const struct tx_table {
GLuint format, filter, flag;
} tx_table[] = {
/* *INDENT-OFF* */
#ifdef MESA_LITTLE_ENDIAN
_ASSIGN(RGBA8888, R300_EASY_TX_FORMAT(Y, Z, W, X, W8Z8Y8X8)),
_ASSIGN(RGBA8888_REV, R300_EASY_TX_FORMAT(Z, Y, X, W, W8Z8Y8X8)),
_ASSIGN(ARGB8888, R300_EASY_TX_FORMAT(X, Y, Z, W, W8Z8Y8X8)),
_ASSIGN(ARGB8888_REV, R300_EASY_TX_FORMAT(W, Z, Y, X, W8Z8Y8X8)),
#else
_ASSIGN(RGBA8888, R300_EASY_TX_FORMAT(Z, Y, X, W, W8Z8Y8X8)),
_ASSIGN(RGBA8888_REV, R300_EASY_TX_FORMAT(Y, Z, W, X, W8Z8Y8X8)),
_ASSIGN(ARGB8888, R300_EASY_TX_FORMAT(W, Z, Y, X, W8Z8Y8X8)),
_ASSIGN(ARGB8888_REV, R300_EASY_TX_FORMAT(X, Y, Z, W, W8Z8Y8X8)),
#endif
_ASSIGN(RGB888, R300_EASY_TX_FORMAT(X, Y, Z, ONE, W8Z8Y8X8)),
_ASSIGN(RGB565, R300_EASY_TX_FORMAT(X, Y, Z, ONE, Z5Y6X5)),
_ASSIGN(RGB565_REV, R300_EASY_TX_FORMAT(X, Y, Z, ONE, Z5Y6X5)),
_ASSIGN(ARGB4444, R300_EASY_TX_FORMAT(X, Y, Z, W, W4Z4Y4X4)),
_ASSIGN(ARGB4444_REV, R300_EASY_TX_FORMAT(X, Y, Z, W, W4Z4Y4X4)),
_ASSIGN(ARGB1555, R300_EASY_TX_FORMAT(X, Y, Z, W, W1Z5Y5X5)),
_ASSIGN(ARGB1555_REV, R300_EASY_TX_FORMAT(X, Y, Z, W, W1Z5Y5X5)),
_ASSIGN(AL88, R300_EASY_TX_FORMAT(X, X, X, Y, Y8X8)),
_ASSIGN(AL88_REV, R300_EASY_TX_FORMAT(X, X, X, Y, Y8X8)),
_ASSIGN(RGB332, R300_EASY_TX_FORMAT(X, Y, Z, ONE, Z3Y3X2)),
_ASSIGN(A8, R300_EASY_TX_FORMAT(ZERO, ZERO, ZERO, X, X8)),
_ASSIGN(L8, R300_EASY_TX_FORMAT(X, X, X, ONE, X8)),
_ASSIGN(I8, R300_EASY_TX_FORMAT(X, X, X, X, X8)),
_ASSIGN(CI8, R300_EASY_TX_FORMAT(X, X, X, X, X8)),
_ASSIGN(YCBCR, R300_EASY_TX_FORMAT(X, Y, Z, ONE, G8R8_G8B8) | R300_TX_FORMAT_YUV_MODE),
_ASSIGN(YCBCR_REV, R300_EASY_TX_FORMAT(X, Y, Z, ONE, G8R8_G8B8) | R300_TX_FORMAT_YUV_MODE),
_ASSIGN(RGB_DXT1, R300_EASY_TX_FORMAT(X, Y, Z, ONE, DXT1)),
_ASSIGN(RGBA_DXT1, R300_EASY_TX_FORMAT(X, Y, Z, W, DXT1)),
_ASSIGN(RGBA_DXT3, R300_EASY_TX_FORMAT(X, Y, Z, W, DXT3)),
_ASSIGN(RGBA_DXT5, R300_EASY_TX_FORMAT(Y, Z, W, X, DXT5)),
_ASSIGN(RGBA_FLOAT32, R300_EASY_TX_FORMAT(Z, Y, X, W, FL_R32G32B32A32)),
_ASSIGN(RGBA_FLOAT16, R300_EASY_TX_FORMAT(Z, Y, X, W, FL_R16G16B16A16)),
_ASSIGN(RGB_FLOAT32, 0xffffffff),
_ASSIGN(RGB_FLOAT16, 0xffffffff),
_ASSIGN(ALPHA_FLOAT32, R300_EASY_TX_FORMAT(ZERO, ZERO, ZERO, X, FL_I32)),
_ASSIGN(ALPHA_FLOAT16, R300_EASY_TX_FORMAT(ZERO, ZERO, ZERO, X, FL_I16)),
_ASSIGN(LUMINANCE_FLOAT32, R300_EASY_TX_FORMAT(X, X, X, ONE, FL_I32)),
_ASSIGN(LUMINANCE_FLOAT16, R300_EASY_TX_FORMAT(X, X, X, ONE, FL_I16)),
_ASSIGN(LUMINANCE_ALPHA_FLOAT32, R300_EASY_TX_FORMAT(X, X, X, Y, FL_I32A32)),
_ASSIGN(LUMINANCE_ALPHA_FLOAT16, R300_EASY_TX_FORMAT(X, X, X, Y, FL_I16A16)),
_ASSIGN(INTENSITY_FLOAT32, R300_EASY_TX_FORMAT(X, X, X, X, FL_I32)),
_ASSIGN(INTENSITY_FLOAT16, R300_EASY_TX_FORMAT(X, X, X, X, FL_I16)),
_ASSIGN(Z16, R300_EASY_TX_FORMAT(X, X, X, X, X16)),
_ASSIGN(Z24_S8, R300_EASY_TX_FORMAT(X, X, X, X, X24_Y8)),
_ASSIGN(Z32, R300_EASY_TX_FORMAT(X, X, X, X, X32)),
/* *INDENT-ON* */
};
#undef _ASSIGN
void r300SetDepthTexMode(struct gl_texture_object *tObj)
{
static const GLuint formats[3][3] = {
{
R300_EASY_TX_FORMAT(X, X, X, ONE, X16),
R300_EASY_TX_FORMAT(X, X, X, X, X16),
R300_EASY_TX_FORMAT(ZERO, ZERO, ZERO, X, X16),
},
{
R300_EASY_TX_FORMAT(X, X, X, ONE, X24_Y8),
R300_EASY_TX_FORMAT(X, X, X, X, X24_Y8),
R300_EASY_TX_FORMAT(ZERO, ZERO, ZERO, X, X24_Y8),
},
{
R300_EASY_TX_FORMAT(X, X, X, ONE, X32),
R300_EASY_TX_FORMAT(X, X, X, X, X32),
R300_EASY_TX_FORMAT(ZERO, ZERO, ZERO, X, X32),
},
};
const GLuint *format;
r300TexObjPtr t;
if (!tObj)
return;
t = (r300TexObjPtr) tObj->DriverData;
switch (tObj->Image[0][tObj->BaseLevel]->TexFormat->MesaFormat) {
case MESA_FORMAT_Z16:
format = formats[0];
break;
case MESA_FORMAT_Z24_S8:
format = formats[1];
break;
case MESA_FORMAT_Z32:
format = formats[2];
break;
default:
/* Error...which should have already been caught by higher
* levels of Mesa.
*/
ASSERT(0);
return;
}
switch (tObj->DepthMode) {
case GL_LUMINANCE:
t->format = format[0];
break;
case GL_INTENSITY:
t->format = format[1];
break;
case GL_ALPHA:
t->format = format[2];
break;
default:
/* Error...which should have already been caught by higher
* levels of Mesa.
*/
ASSERT(0);
return;
}
}
/**
* Compute sizes and fill in offset and blit information for the given
* image (determined by \p face and \p level).
*
* \param curOffset points to the offset at which the image is to be stored
* and is updated by this function according to the size of the image.
*/
static void compute_tex_image_offset(
struct gl_texture_object *tObj,
GLuint face,
GLint level,
GLint* curOffset)
{
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
const struct gl_texture_image* texImage;
GLuint blitWidth = R300_BLIT_WIDTH_BYTES;
GLuint texelBytes;
GLuint size;
texImage = tObj->Image[0][level + t->base.firstLevel];
if (!texImage)
return;
texelBytes = texImage->TexFormat->TexelBytes;
/* find image size in bytes */
if (texImage->IsCompressed) {
if ((t->format & R300_TX_FORMAT_DXT1) ==
R300_TX_FORMAT_DXT1) {
// fprintf(stderr,"DXT 1 %d %08X\n", texImage->Width, t->format);
if ((texImage->Width + 3) < 8) /* width one block */
size = texImage->CompressedSize * 4;
else if ((texImage->Width + 3) < 16)
size = texImage->CompressedSize * 2;
else
size = texImage->CompressedSize;
} else {
/* DXT3/5, 16 bytes per block */
WARN_ONCE
("DXT 3/5 suffers from multitexturing problems!\n");
// fprintf(stderr,"DXT 3/5 %d\n", texImage->Width);
if ((texImage->Width + 3) < 8)
size = texImage->CompressedSize * 2;
else
size = texImage->CompressedSize;
}
} else if (tObj->Target == GL_TEXTURE_RECTANGLE_NV) {
size =
((texImage->Width * texelBytes +
63) & ~63) * texImage->Height;
blitWidth = 64 / texelBytes;
} else if (t->tile_bits & R300_TXO_MICRO_TILE) {
/* tile pattern is 16 bytes x2. mipmaps stay 32 byte aligned,
though the actual offset may be different (if texture is less than
32 bytes width) to the untiled case */
int w = (texImage->Width * texelBytes * 2 + 31) & ~31;
size =
(w * ((texImage->Height + 1) / 2)) *
texImage->Depth;
blitWidth = MAX2(texImage->Width, 64 / texelBytes);
} else {
int w = (texImage->Width * texelBytes + 31) & ~31;
size = w * texImage->Height * texImage->Depth;
blitWidth = MAX2(texImage->Width, 64 / texelBytes);
}
assert(size > 0);
if (RADEON_DEBUG & DEBUG_TEXTURE)
fprintf(stderr, "w=%d h=%d d=%d tb=%d intFormat=%d\n",
texImage->Width, texImage->Height,
texImage->Depth,
texImage->TexFormat->TexelBytes,
texImage->InternalFormat);
/* All images are aligned to a 32-byte offset */
*curOffset = (*curOffset + 0x1f) & ~0x1f;
if (texelBytes) {
/* fix x and y coords up later together with offset */
t->image[face][level].x = *curOffset;
t->image[face][level].y = 0;
t->image[face][level].width =
MIN2(size / texelBytes, blitWidth);
t->image[face][level].height =
(size / texelBytes) / t->image[face][level].width;
} else {
t->image[face][level].x = *curOffset % R300_BLIT_WIDTH_BYTES;
t->image[face][level].y = *curOffset / R300_BLIT_WIDTH_BYTES;
t->image[face][level].width =
MIN2(size, R300_BLIT_WIDTH_BYTES);
t->image[face][level].height = size / t->image[face][level].width;
}
if (RADEON_DEBUG & DEBUG_TEXTURE)
fprintf(stderr,
"level %d, face %d: %dx%d x=%d y=%d w=%d h=%d size=%d at %d\n",
level, face, texImage->Width, texImage->Height,
t->image[face][level].x, t->image[face][level].y,
t->image[face][level].width, t->image[face][level].height,
size, *curOffset);
*curOffset += size;
}
/**
* This function computes the number of bytes of storage needed for
* the given texture object (all mipmap levels, all cube faces).
* The \c image[face][level].x/y/width/height parameters for upload/blitting
* are computed here. \c filter, \c format, etc. will be set here
* too.
*
* \param rmesa Context pointer
* \param tObj GL texture object whose images are to be posted to
* hardware state.
*/
static void r300SetTexImages(r300ContextPtr rmesa,
struct gl_texture_object *tObj)
{
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
const struct gl_texture_image *baseImage =
tObj->Image[0][tObj->BaseLevel];
GLint curOffset;
GLint i, texelBytes;
GLint numLevels;
GLint log2Width, log2Height, log2Depth;
/* Set the hardware texture format
*/
if (!t->image_override
&& VALID_FORMAT(baseImage->TexFormat->MesaFormat)) {
if (baseImage->TexFormat->BaseFormat == GL_DEPTH_COMPONENT) {
r300SetDepthTexMode(tObj);
} else {
t->format = tx_table[baseImage->TexFormat->MesaFormat].format;
}
t->filter |= tx_table[baseImage->TexFormat->MesaFormat].filter;
} else if (!t->image_override) {
_mesa_problem(NULL, "unexpected texture format in %s",
__FUNCTION__);
return;
}
texelBytes = baseImage->TexFormat->TexelBytes;
/* Compute which mipmap levels we really want to send to the hardware.
*/
driCalculateTextureFirstLastLevel((driTextureObject *) t);
log2Width = tObj->Image[0][t->base.firstLevel]->WidthLog2;
log2Height = tObj->Image[0][t->base.firstLevel]->HeightLog2;
log2Depth = tObj->Image[0][t->base.firstLevel]->DepthLog2;
numLevels = t->base.lastLevel - t->base.firstLevel + 1;
assert(numLevels <= RADEON_MAX_TEXTURE_LEVELS);
/* Calculate mipmap offsets and dimensions for blitting (uploading)
* The idea is that we lay out the mipmap levels within a block of
* memory organized as a rectangle of width BLIT_WIDTH_BYTES.
*/
t->tile_bits = 0;
/* figure out if this texture is suitable for tiling. */
#if 0 /* Disabled for now */
if (texelBytes) {
if ((tObj->Target != GL_TEXTURE_RECTANGLE_NV) &&
/* texrect might be able to use micro tiling too in theory? */
(baseImage->Height > 1)) {
/* allow 32 (bytes) x 1 mip (which will use two times the space
the non-tiled version would use) max if base texture is large enough */
if ((numLevels == 1) ||
(((baseImage->Width * texelBytes /
baseImage->Height) <= 32)
&& (baseImage->Width * texelBytes > 64))
||
((baseImage->Width * texelBytes /
baseImage->Height) <= 16)) {
t->tile_bits |= R300_TXO_MICRO_TILE;
}
}
if (tObj->Target != GL_TEXTURE_RECTANGLE_NV) {
/* we can set macro tiling even for small textures, they will be untiled anyway */
t->tile_bits |= R300_TXO_MACRO_TILE;
}
}
#endif
curOffset = 0;
if (tObj->Target == GL_TEXTURE_CUBE_MAP) {
ASSERT(log2Width == log2Height);
t->format |= R300_TX_FORMAT_CUBIC_MAP;
for(i = 0; i < numLevels; i++) {
GLuint face;
for(face = 0; face < 6; face++)
compute_tex_image_offset(tObj, face, i, &curOffset);
}
} else {
if (tObj->Target == GL_TEXTURE_3D)
t->format |= R300_TX_FORMAT_3D;
for (i = 0; i < numLevels; i++)
compute_tex_image_offset(tObj, 0, i, &curOffset);
}
/* Align the total size of texture memory block.
*/
t->base.totalSize =
(curOffset + RADEON_OFFSET_MASK) & ~RADEON_OFFSET_MASK;
t->size =
(((tObj->Image[0][t->base.firstLevel]->Width -
1) << R300_TX_WIDTHMASK_SHIFT)
| ((tObj->Image[0][t->base.firstLevel]->Height - 1) <<
R300_TX_HEIGHTMASK_SHIFT)
| ((tObj->Image[0][t->base.firstLevel]->DepthLog2) <<
R300_TX_DEPTHMASK_SHIFT))
| ((numLevels - 1) << R300_TX_MAX_MIP_LEVEL_SHIFT);
t->pitch = 0;
/* Only need to round to nearest 32 for textures, but the blitter
* requires 64-byte aligned pitches, and we may/may not need the
* blitter. NPOT only!
*/
if (baseImage->IsCompressed) {
t->pitch |=
(tObj->Image[0][t->base.firstLevel]->Width + 63) & ~(63);
} else if (tObj->Target == GL_TEXTURE_RECTANGLE_NV) {
unsigned int align = (64 / texelBytes) - 1;
t->pitch |= ((tObj->Image[0][t->base.firstLevel]->Width *
texelBytes) + 63) & ~(63);
t->size |= R300_TX_SIZE_TXPITCH_EN;
if (!t->image_override)
t->pitch_reg =
(((tObj->Image[0][t->base.firstLevel]->Width) +
align) & ~align) - 1;
} else {
t->pitch |=
((tObj->Image[0][t->base.firstLevel]->Width *
texelBytes) + 63) & ~(63);
}
if (rmesa->radeon.radeonScreen->chip_family >= CHIP_FAMILY_RV515) {
if (tObj->Image[0][t->base.firstLevel]->Width > 2048)
t->pitch_reg |= R500_TXWIDTH_BIT11;
if (tObj->Image[0][t->base.firstLevel]->Height > 2048)
t->pitch_reg |= R500_TXHEIGHT_BIT11;
}
}
/* ================================================================
* Texture unit state management
*/
static GLboolean r300EnableTexture2D(GLcontext * ctx, int unit)
{
r300ContextPtr rmesa = R300_CONTEXT(ctx);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
struct gl_texture_object *tObj = texUnit->_Current;
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
ASSERT(tObj->Target == GL_TEXTURE_2D || tObj->Target == GL_TEXTURE_1D);
if (t->base.dirty_images[0]) {
R300_FIREVERTICES(rmesa);
r300SetTexImages(rmesa, tObj);
r300UploadTexImages(rmesa, (r300TexObjPtr) tObj->DriverData, 0);
if (!t->base.memBlock && !t->image_override)
return GL_FALSE;
}
return GL_TRUE;
}
static GLboolean r300EnableTexture3D(GLcontext * ctx, int unit)
{
r300ContextPtr rmesa = R300_CONTEXT(ctx);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
struct gl_texture_object *tObj = texUnit->_Current;
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
ASSERT(tObj->Target == GL_TEXTURE_3D);
/* r300 does not support mipmaps for 3D textures. */
if ((tObj->MinFilter != GL_NEAREST) && (tObj->MinFilter != GL_LINEAR)) {
return GL_FALSE;
}
if (t->base.dirty_images[0]) {
R300_FIREVERTICES(rmesa);
r300SetTexImages(rmesa, tObj);
r300UploadTexImages(rmesa, (r300TexObjPtr) tObj->DriverData, 0);
if (!t->base.memBlock)
return GL_FALSE;
}
return GL_TRUE;
}
static GLboolean r300EnableTextureCube(GLcontext * ctx, int unit)
{
r300ContextPtr rmesa = R300_CONTEXT(ctx);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
struct gl_texture_object *tObj = texUnit->_Current;
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
GLuint face;
ASSERT(tObj->Target == GL_TEXTURE_CUBE_MAP);
if (t->base.dirty_images[0] || t->base.dirty_images[1] ||
t->base.dirty_images[2] || t->base.dirty_images[3] ||
t->base.dirty_images[4] || t->base.dirty_images[5]) {
/* flush */
R300_FIREVERTICES(rmesa);
/* layout memory space, once for all faces */
r300SetTexImages(rmesa, tObj);
}
/* upload (per face) */
for (face = 0; face < 6; face++) {
if (t->base.dirty_images[face]) {
r300UploadTexImages(rmesa,
(r300TexObjPtr) tObj->DriverData,
face);
}
}
if (!t->base.memBlock) {
/* texmem alloc failed, use s/w fallback */
return GL_FALSE;
}
return GL_TRUE;
}
static GLboolean r300EnableTextureRect(GLcontext * ctx, int unit)
{
r300ContextPtr rmesa = R300_CONTEXT(ctx);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
struct gl_texture_object *tObj = texUnit->_Current;
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
ASSERT(tObj->Target == GL_TEXTURE_RECTANGLE_NV);
if (t->base.dirty_images[0]) {
R300_FIREVERTICES(rmesa);
r300SetTexImages(rmesa, tObj);
r300UploadTexImages(rmesa, (r300TexObjPtr) tObj->DriverData, 0);
if (!t->base.memBlock && !t->image_override &&
!rmesa->prefer_gart_client_texturing)
return GL_FALSE;
}
return GL_TRUE;
}
static GLboolean r300UpdateTexture(GLcontext * ctx, int unit)
{
r300ContextPtr rmesa = R300_CONTEXT(ctx);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
struct gl_texture_object *tObj = texUnit->_Current;
r300TexObjPtr t = (r300TexObjPtr) tObj->DriverData;
/* Fallback if there's a texture border */
if (tObj->Image[0][tObj->BaseLevel]->Border > 0)
return GL_FALSE;
/* Update state if this is a different texture object to last
* time.
*/
if (rmesa->state.texture.unit[unit].texobj != t) {
if (rmesa->state.texture.unit[unit].texobj != NULL) {
/* The old texture is no longer bound to this texture unit.
* Mark it as such.
*/
rmesa->state.texture.unit[unit].texobj->base.bound &=
~(1 << unit);
}
rmesa->state.texture.unit[unit].texobj = t;
t->base.bound |= (1 << unit);
driUpdateTextureLRU((driTextureObject *) t); /* XXX: should be locked! */
}
return !t->border_fallback;
}
void r300SetTexOffset(__DRIcontext * pDRICtx, GLint texname,
unsigned long long offset, GLint depth, GLuint pitch)
{
r300ContextPtr rmesa = pDRICtx->driverPrivate;
struct gl_texture_object *tObj =
_mesa_lookup_texture(rmesa->radeon.glCtx, texname);
r300TexObjPtr t;
uint32_t pitch_val;
if (!tObj)
return;
t = (r300TexObjPtr) tObj->DriverData;
t->image_override = GL_TRUE;
if (!offset)
return;
t->offset = offset;
t->pitch_reg &= (1 << 13) -1;
pitch_val = pitch;
switch (depth) {
case 32:
t->format = R300_EASY_TX_FORMAT(X, Y, Z, W, W8Z8Y8X8);
t->filter |= tx_table[2].filter;
pitch_val /= 4;
break;
case 24:
default:
t->format = R300_EASY_TX_FORMAT(X, Y, Z, ONE, W8Z8Y8X8);
t->filter |= tx_table[4].filter;
pitch_val /= 4;
break;
case 16:
t->format = R300_EASY_TX_FORMAT(X, Y, Z, ONE, Z5Y6X5);
t->filter |= tx_table[5].filter;
pitch_val /= 2;
break;
}
pitch_val--;
t->pitch_reg |= pitch_val;
}
static GLboolean r300UpdateTextureUnit(GLcontext * ctx, int unit)
{
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
if (texUnit->_ReallyEnabled & (TEXTURE_RECT_BIT)) {
return (r300EnableTextureRect(ctx, unit) &&
r300UpdateTexture(ctx, unit));
} else if (texUnit->_ReallyEnabled & (TEXTURE_1D_BIT | TEXTURE_2D_BIT)) {
return (r300EnableTexture2D(ctx, unit) &&
r300UpdateTexture(ctx, unit));
} else if (texUnit->_ReallyEnabled & (TEXTURE_3D_BIT)) {
return (r300EnableTexture3D(ctx, unit) &&
r300UpdateTexture(ctx, unit));
} else if (texUnit->_ReallyEnabled & (TEXTURE_CUBE_BIT)) {
return (r300EnableTextureCube(ctx, unit) &&
r300UpdateTexture(ctx, unit));
} else if (texUnit->_ReallyEnabled) {
return GL_FALSE;
} else {
return GL_TRUE;
}
}
void r300UpdateTextureState(GLcontext * ctx)
{
int i;
for (i = 0; i < 8; i++) {
if (!r300UpdateTextureUnit(ctx, i)) {
_mesa_warning(ctx,
"failed to update texture state for unit %d.\n",
i);
}
}
}