blob: 1ef71e74dcf27c4c956d7b06cae73a1b8231985d [file] [log] [blame]
/*
* Copyright (C) 2008 Nicolai Haehnle.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/**
* @file
*
* Shareable transformations that transform "special" ALU instructions
* into ALU instructions that are supported by hardware.
*
*/
#include "radeon_program_alu.h"
#include "shader/prog_parameter.h"
static struct prog_instruction *emit1(struct gl_program* p,
gl_inst_opcode Opcode, GLuint Saturate, struct prog_dst_register DstReg,
struct prog_src_register SrcReg)
{
struct prog_instruction *fpi = radeonAppendInstructions(p, 1);
fpi->Opcode = Opcode;
fpi->SaturateMode = Saturate;
fpi->DstReg = DstReg;
fpi->SrcReg[0] = SrcReg;
return fpi;
}
static struct prog_instruction *emit2(struct gl_program* p,
gl_inst_opcode Opcode, GLuint Saturate, struct prog_dst_register DstReg,
struct prog_src_register SrcReg0, struct prog_src_register SrcReg1)
{
struct prog_instruction *fpi = radeonAppendInstructions(p, 1);
fpi->Opcode = Opcode;
fpi->SaturateMode = Saturate;
fpi->DstReg = DstReg;
fpi->SrcReg[0] = SrcReg0;
fpi->SrcReg[1] = SrcReg1;
return fpi;
}
static struct prog_instruction *emit3(struct gl_program* p,
gl_inst_opcode Opcode, GLuint Saturate, struct prog_dst_register DstReg,
struct prog_src_register SrcReg0, struct prog_src_register SrcReg1,
struct prog_src_register SrcReg2)
{
struct prog_instruction *fpi = radeonAppendInstructions(p, 1);
fpi->Opcode = Opcode;
fpi->SaturateMode = Saturate;
fpi->DstReg = DstReg;
fpi->SrcReg[0] = SrcReg0;
fpi->SrcReg[1] = SrcReg1;
fpi->SrcReg[2] = SrcReg2;
return fpi;
}
static void set_swizzle(struct prog_src_register *SrcReg, int coordinate, int swz)
{
SrcReg->Swizzle &= ~(7 << (3*coordinate));
SrcReg->Swizzle |= swz << (3*coordinate);
}
static void set_negate_base(struct prog_src_register *SrcReg, int coordinate, int negate)
{
SrcReg->NegateBase &= ~(1 << coordinate);
SrcReg->NegateBase |= (negate << coordinate);
}
static struct prog_dst_register dstreg(int file, int index)
{
struct prog_dst_register dst;
dst.File = file;
dst.Index = index;
dst.WriteMask = WRITEMASK_XYZW;
dst.CondMask = COND_TR;
dst.CondSwizzle = SWIZZLE_NOOP;
dst.CondSrc = 0;
dst.pad = 0;
return dst;
}
static struct prog_dst_register dstregtmpmask(int index, int mask)
{
struct prog_dst_register dst;
dst.File = PROGRAM_TEMPORARY;
dst.Index = index;
dst.WriteMask = mask;
dst.CondMask = COND_TR;
dst.CondSwizzle = SWIZZLE_NOOP;
dst.CondSrc = 0;
dst.pad = 0;
return dst;
}
static const struct prog_src_register builtin_zero = {
.File = PROGRAM_BUILTIN,
.Index = 0,
.Swizzle = SWIZZLE_0000
};
static const struct prog_src_register builtin_one = {
.File = PROGRAM_BUILTIN,
.Index = 0,
.Swizzle = SWIZZLE_1111
};
static const struct prog_src_register srcreg_undefined = {
.File = PROGRAM_UNDEFINED,
.Index = 0,
.Swizzle = SWIZZLE_NOOP
};
static struct prog_src_register srcreg(int file, int index)
{
struct prog_src_register src = srcreg_undefined;
src.File = file;
src.Index = index;
return src;
}
static struct prog_src_register srcregswz(int file, int index, int swz)
{
struct prog_src_register src = srcreg_undefined;
src.File = file;
src.Index = index;
src.Swizzle = swz;
return src;
}
static struct prog_src_register absolute(struct prog_src_register reg)
{
struct prog_src_register newreg = reg;
newreg.Abs = 1;
newreg.NegateBase = 0;
newreg.NegateAbs = 0;
return newreg;
}
static struct prog_src_register negate(struct prog_src_register reg)
{
struct prog_src_register newreg = reg;
newreg.NegateAbs = !newreg.NegateAbs;
return newreg;
}
static struct prog_src_register swizzle(struct prog_src_register reg, GLuint x, GLuint y, GLuint z, GLuint w)
{
struct prog_src_register swizzled = reg;
swizzled.Swizzle = MAKE_SWIZZLE4(
x >= 4 ? x : GET_SWZ(reg.Swizzle, x),
y >= 4 ? y : GET_SWZ(reg.Swizzle, y),
z >= 4 ? z : GET_SWZ(reg.Swizzle, z),
w >= 4 ? w : GET_SWZ(reg.Swizzle, w));
return swizzled;
}
static struct prog_src_register scalar(struct prog_src_register reg)
{
return swizzle(reg, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
}
static void transform_ABS(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
struct prog_src_register src = inst->SrcReg[0];
src.Abs = 1;
src.NegateBase = 0;
src.NegateAbs = 0;
emit1(t->Program, OPCODE_MOV, inst->SaturateMode, inst->DstReg, src);
}
static void transform_DPH(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
struct prog_src_register src0 = inst->SrcReg[0];
if (src0.NegateAbs) {
if (src0.Abs) {
int tempreg = radeonFindFreeTemporary(t);
emit1(t->Program, OPCODE_MOV, 0, dstreg(PROGRAM_TEMPORARY, tempreg), src0);
src0 = srcreg(src0.File, src0.Index);
} else {
src0.NegateAbs = 0;
src0.NegateBase ^= NEGATE_XYZW;
}
}
set_swizzle(&src0, 3, SWIZZLE_ONE);
set_negate_base(&src0, 3, 0);
emit2(t->Program, OPCODE_DP4, inst->SaturateMode, inst->DstReg, src0, inst->SrcReg[1]);
}
/**
* [1, src0.y*src1.y, src0.z, src1.w]
* So basically MUL with lotsa swizzling.
*/
static void transform_DST(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
emit2(t->Program, OPCODE_MUL, inst->SaturateMode, inst->DstReg,
swizzle(inst->SrcReg[0], SWIZZLE_ONE, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE),
swizzle(inst->SrcReg[1], SWIZZLE_ONE, SWIZZLE_Y, SWIZZLE_ONE, SWIZZLE_W));
}
static void transform_FLR(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
int tempreg = radeonFindFreeTemporary(t);
emit1(t->Program, OPCODE_FRC, 0, dstreg(PROGRAM_TEMPORARY, tempreg), inst->SrcReg[0]);
emit2(t->Program, OPCODE_ADD, inst->SaturateMode, inst->DstReg,
inst->SrcReg[0], negate(srcreg(PROGRAM_TEMPORARY, tempreg)));
}
/**
* Definition of LIT (from ARB_fragment_program):
*
* tmp = VectorLoad(op0);
* if (tmp.x < 0) tmp.x = 0;
* if (tmp.y < 0) tmp.y = 0;
* if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
* else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
* result.x = 1.0;
* result.y = tmp.x;
* result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
* result.w = 1.0;
*
* The longest path of computation is the one leading to result.z,
* consisting of 5 operations. This implementation of LIT takes
* 5 slots, if the subsequent optimization passes are clever enough
* to pair instructions correctly.
*/
static void transform_LIT(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
static const GLfloat LitConst[4] = { -127.999999 };
GLuint constant;
GLuint constant_swizzle;
GLuint temp;
int needTemporary = 0;
struct prog_src_register srctemp;
constant = _mesa_add_unnamed_constant(t->Program->Parameters, LitConst, 1, &constant_swizzle);
if (inst->DstReg.WriteMask != WRITEMASK_XYZW) {
needTemporary = 1;
} else if (inst->DstReg.File != PROGRAM_TEMPORARY) {
// LIT is typically followed by DP3/DP4, so there's no point
// in creating special code for this case
needTemporary = 1;
}
if (needTemporary) {
temp = radeonFindFreeTemporary(t);
} else {
temp = inst->DstReg.Index;
}
srctemp = srcreg(PROGRAM_TEMPORARY, temp);
// tmp.x = max(0.0, Src.x);
// tmp.y = max(0.0, Src.y);
// tmp.w = clamp(Src.z, -128+eps, 128-eps);
emit2(t->Program, OPCODE_MAX, 0,
dstregtmpmask(temp, WRITEMASK_XYW),
inst->SrcReg[0],
swizzle(srcreg(PROGRAM_CONSTANT, constant),
SWIZZLE_ZERO, SWIZZLE_ZERO, SWIZZLE_ZERO, constant_swizzle&3));
emit2(t->Program, OPCODE_MIN, 0,
dstregtmpmask(temp, WRITEMASK_Z),
swizzle(srctemp, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
negate(srcregswz(PROGRAM_CONSTANT, constant, constant_swizzle)));
// tmp.w = Pow(tmp.y, tmp.w)
emit1(t->Program, OPCODE_LG2, 0,
dstregtmpmask(temp, WRITEMASK_W),
swizzle(srctemp, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y));
emit2(t->Program, OPCODE_MUL, 0,
dstregtmpmask(temp, WRITEMASK_W),
swizzle(srctemp, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
swizzle(srctemp, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z));
emit1(t->Program, OPCODE_EX2, 0,
dstregtmpmask(temp, WRITEMASK_W),
swizzle(srctemp, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W));
// tmp.z = (tmp.x > 0) ? tmp.w : 0.0
emit3(t->Program, OPCODE_CMP, inst->SaturateMode,
dstregtmpmask(temp, WRITEMASK_Z),
negate(swizzle(srctemp, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X)),
swizzle(srctemp, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
builtin_zero);
// tmp.x, tmp.y, tmp.w = 1.0, tmp.x, 1.0
emit1(t->Program, OPCODE_MOV, inst->SaturateMode,
dstregtmpmask(temp, WRITEMASK_XYW),
swizzle(srctemp, SWIZZLE_ONE, SWIZZLE_X, SWIZZLE_ONE, SWIZZLE_ONE));
if (needTemporary)
emit1(t->Program, OPCODE_MOV, 0, inst->DstReg, srctemp);
}
static void transform_LRP(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
int tempreg = radeonFindFreeTemporary(t);
emit2(t->Program, OPCODE_ADD, 0,
dstreg(PROGRAM_TEMPORARY, tempreg),
inst->SrcReg[1], negate(inst->SrcReg[2]));
emit3(t->Program, OPCODE_MAD, inst->SaturateMode,
inst->DstReg,
inst->SrcReg[0], srcreg(PROGRAM_TEMPORARY, tempreg), inst->SrcReg[2]);
}
static void transform_POW(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
int tempreg = radeonFindFreeTemporary(t);
struct prog_dst_register tempdst = dstreg(PROGRAM_TEMPORARY, tempreg);
struct prog_src_register tempsrc = srcreg(PROGRAM_TEMPORARY, tempreg);
tempdst.WriteMask = WRITEMASK_W;
tempsrc.Swizzle = SWIZZLE_WWWW;
emit1(t->Program, OPCODE_LG2, 0, tempdst, scalar(inst->SrcReg[0]));
emit2(t->Program, OPCODE_MUL, 0, tempdst, tempsrc, scalar(inst->SrcReg[1]));
emit1(t->Program, OPCODE_EX2, inst->SaturateMode, inst->DstReg, tempsrc);
}
static void transform_RSQ(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
emit1(t->Program, OPCODE_RSQ, inst->SaturateMode, inst->DstReg, absolute(inst->SrcReg[0]));
}
static void transform_SGE(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
int tempreg = radeonFindFreeTemporary(t);
emit2(t->Program, OPCODE_ADD, 0, dstreg(PROGRAM_TEMPORARY, tempreg), inst->SrcReg[0], negate(inst->SrcReg[1]));
emit3(t->Program, OPCODE_CMP, inst->SaturateMode, inst->DstReg,
srcreg(PROGRAM_TEMPORARY, tempreg), builtin_zero, builtin_one);
}
static void transform_SLT(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
int tempreg = radeonFindFreeTemporary(t);
emit2(t->Program, OPCODE_ADD, 0, dstreg(PROGRAM_TEMPORARY, tempreg), inst->SrcReg[0], negate(inst->SrcReg[1]));
emit3(t->Program, OPCODE_CMP, inst->SaturateMode, inst->DstReg,
srcreg(PROGRAM_TEMPORARY, tempreg), builtin_one, builtin_zero);
}
static void transform_SUB(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
emit2(t->Program, OPCODE_ADD, inst->SaturateMode, inst->DstReg, inst->SrcReg[0], negate(inst->SrcReg[1]));
}
static void transform_SWZ(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
emit1(t->Program, OPCODE_MOV, inst->SaturateMode, inst->DstReg, inst->SrcReg[0]);
}
static void transform_XPD(struct radeon_transform_context* t,
struct prog_instruction* inst)
{
int tempreg = radeonFindFreeTemporary(t);
emit2(t->Program, OPCODE_MUL, 0, dstreg(PROGRAM_TEMPORARY, tempreg),
swizzle(inst->SrcReg[0], SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y, SWIZZLE_W),
swizzle(inst->SrcReg[1], SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X, SWIZZLE_W));
emit3(t->Program, OPCODE_MAD, inst->SaturateMode, inst->DstReg,
swizzle(inst->SrcReg[0], SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X, SWIZZLE_W),
swizzle(inst->SrcReg[1], SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y, SWIZZLE_W),
negate(srcreg(PROGRAM_TEMPORARY, tempreg)));
}
/**
* Can be used as a transformation for @ref radeonClauseLocalTransform,
* no userData necessary.
*
* Eliminates the following ALU instructions:
* ABS, DPH, DST, FLR, LIT, LRP, POW, SGE, SLT, SUB, SWZ, XPD
* using:
* MOV, ADD, MUL, MAD, FRC, DP3, LG2, EX2, CMP
*
* Transforms RSQ to Radeon's native RSQ by explicitly setting
* absolute value.
*
* @note should be applicable to R300 and R500 fragment programs.
*/
GLboolean radeonTransformALU(struct radeon_transform_context* t,
struct prog_instruction* inst,
void* unused)
{
switch(inst->Opcode) {
case OPCODE_ABS: transform_ABS(t, inst); return GL_TRUE;
case OPCODE_DPH: transform_DPH(t, inst); return GL_TRUE;
case OPCODE_DST: transform_DST(t, inst); return GL_TRUE;
case OPCODE_FLR: transform_FLR(t, inst); return GL_TRUE;
case OPCODE_LIT: transform_LIT(t, inst); return GL_TRUE;
case OPCODE_LRP: transform_LRP(t, inst); return GL_TRUE;
case OPCODE_POW: transform_POW(t, inst); return GL_TRUE;
case OPCODE_RSQ: transform_RSQ(t, inst); return GL_TRUE;
case OPCODE_SGE: transform_SGE(t, inst); return GL_TRUE;
case OPCODE_SLT: transform_SLT(t, inst); return GL_TRUE;
case OPCODE_SUB: transform_SUB(t, inst); return GL_TRUE;
case OPCODE_SWZ: transform_SWZ(t, inst); return GL_TRUE;
case OPCODE_XPD: transform_XPD(t, inst); return GL_TRUE;
default:
return GL_FALSE;
}
}
static void sincos_constants(struct radeon_transform_context* t, GLuint *constants)
{
static const GLfloat SinCosConsts[2][4] = {
{
1.273239545, // 4/PI
-0.405284735, // -4/(PI*PI)
3.141592654, // PI
0.2225 // weight
},
{
0.75,
0.5,
0.159154943, // 1/(2*PI)
6.283185307 // 2*PI
}
};
int i;
for(i = 0; i < 2; ++i) {
GLuint swz;
constants[i] = _mesa_add_unnamed_constant(t->Program->Parameters, SinCosConsts[i], 4, &swz);
ASSERT(swz == SWIZZLE_NOOP);
}
}
/**
* Approximate sin(x), where x is clamped to (-pi/2, pi/2).
*
* MUL tmp.xy, src, { 4/PI, -4/(PI^2) }
* MAD tmp.x, tmp.y, |src|, tmp.x
* MAD tmp.y, tmp.x, |tmp.x|, -tmp.x
* MAD dest, tmp.y, weight, tmp.x
*/
static void sin_approx(struct radeon_transform_context* t,
struct prog_dst_register dst, struct prog_src_register src, const GLuint* constants)
{
GLuint tempreg = radeonFindFreeTemporary(t);
emit2(t->Program, OPCODE_MUL, 0, dstregtmpmask(tempreg, WRITEMASK_XY),
swizzle(src, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
srcreg(PROGRAM_CONSTANT, constants[0]));
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_X),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
absolute(swizzle(src, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X)),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X));
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_Y),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
absolute(swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X)),
negate(swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X)));
emit3(t->Program, OPCODE_MAD, 0, dst,
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
swizzle(srcreg(PROGRAM_CONSTANT, constants[0]), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X));
}
/**
* Translate the trigonometric functions COS, SIN, and SCS
* using only the basic instructions
* MOV, ADD, MUL, MAD, FRC
*/
GLboolean radeonTransformTrigSimple(struct radeon_transform_context* t,
struct prog_instruction* inst,
void* unused)
{
if (inst->Opcode != OPCODE_COS &&
inst->Opcode != OPCODE_SIN &&
inst->Opcode != OPCODE_SCS)
return GL_FALSE;
GLuint constants[2];
GLuint tempreg = radeonFindFreeTemporary(t);
sincos_constants(t, constants);
if (inst->Opcode == OPCODE_COS) {
// MAD tmp.x, src, 1/(2*PI), 0.75
// FRC tmp.x, tmp.x
// MAD tmp.z, tmp.x, 2*PI, -PI
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_W),
swizzle(inst->SrcReg[0], SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X));
emit1(t->Program, OPCODE_FRC, 0, dstregtmpmask(tempreg, WRITEMASK_W),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W));
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_W),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
negate(swizzle(srcreg(PROGRAM_CONSTANT, constants[0]), SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z)));
sin_approx(t, inst->DstReg,
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
constants);
} else if (inst->Opcode == OPCODE_SIN) {
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_W),
swizzle(inst->SrcReg[0], SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y));
emit1(t->Program, OPCODE_FRC, 0, dstregtmpmask(tempreg, WRITEMASK_W),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W));
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_W),
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
negate(swizzle(srcreg(PROGRAM_CONSTANT, constants[0]), SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z)));
sin_approx(t, inst->DstReg,
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
constants);
} else {
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_XY),
swizzle(inst->SrcReg[0], SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W));
emit1(t->Program, OPCODE_FRC, 0, dstregtmpmask(tempreg, WRITEMASK_XY),
srcreg(PROGRAM_TEMPORARY, tempreg));
emit3(t->Program, OPCODE_MAD, 0, dstregtmpmask(tempreg, WRITEMASK_XY),
srcreg(PROGRAM_TEMPORARY, tempreg),
swizzle(srcreg(PROGRAM_CONSTANT, constants[1]), SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W),
negate(swizzle(srcreg(PROGRAM_CONSTANT, constants[0]), SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z)));
struct prog_dst_register dst = inst->DstReg;
dst.WriteMask = inst->DstReg.WriteMask & WRITEMASK_X;
sin_approx(t, dst,
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
constants);
dst.WriteMask = inst->DstReg.WriteMask & WRITEMASK_Y;
sin_approx(t, dst,
swizzle(srcreg(PROGRAM_TEMPORARY, tempreg), SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
constants);
}
return GL_TRUE;
}
/**
* Transform the trigonometric functions COS, SIN, and SCS
* to include pre-scaling by 1/(2*PI) and taking the fractional
* part, so that the input to COS and SIN is always in the range [0,1).
* SCS is replaced by one COS and one SIN instruction.
*
* @warning This transformation implicitly changes the semantics of SIN and COS!
*/
GLboolean radeonTransformTrigScale(struct radeon_transform_context* t,
struct prog_instruction* inst,
void* unused)
{
if (inst->Opcode != OPCODE_COS &&
inst->Opcode != OPCODE_SIN &&
inst->Opcode != OPCODE_SCS)
return GL_FALSE;
static const GLfloat RCP_2PI[] = { 0.15915494309189535 };
GLuint temp;
GLuint constant;
GLuint constant_swizzle;
temp = radeonFindFreeTemporary(t);
constant = _mesa_add_unnamed_constant(t->Program->Parameters, RCP_2PI, 1, &constant_swizzle);
emit2(t->Program, OPCODE_MUL, 0, dstregtmpmask(temp, WRITEMASK_W),
swizzle(inst->SrcReg[0], SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
srcregswz(PROGRAM_CONSTANT, constant, constant_swizzle));
emit1(t->Program, OPCODE_FRC, 0, dstregtmpmask(temp, WRITEMASK_W),
srcreg(PROGRAM_TEMPORARY, temp));
if (inst->Opcode == OPCODE_COS) {
emit1(t->Program, OPCODE_COS, inst->SaturateMode, inst->DstReg,
srcregswz(PROGRAM_TEMPORARY, temp, SWIZZLE_WWWW));
} else if (inst->Opcode == OPCODE_SIN) {
emit1(t->Program, OPCODE_SIN, inst->SaturateMode,
inst->DstReg, srcregswz(PROGRAM_TEMPORARY, temp, SWIZZLE_WWWW));
} else if (inst->Opcode == OPCODE_SCS) {
struct prog_dst_register moddst = inst->DstReg;
if (inst->DstReg.WriteMask & WRITEMASK_X) {
moddst.WriteMask = WRITEMASK_X;
emit1(t->Program, OPCODE_COS, inst->SaturateMode, moddst,
srcregswz(PROGRAM_TEMPORARY, temp, SWIZZLE_WWWW));
}
if (inst->DstReg.WriteMask & WRITEMASK_Y) {
moddst.WriteMask = WRITEMASK_Y;
emit1(t->Program, OPCODE_SIN, inst->SaturateMode, moddst,
srcregswz(PROGRAM_TEMPORARY, temp, SWIZZLE_WWWW));
}
}
return GL_TRUE;
}
/**
* Rewrite DDX/DDY instructions to properly work with r5xx shaders.
* The r5xx MDH/MDV instruction provides per-quad partial derivatives.
* It takes the form A*B+C. A and C are set by setting src0. B should be -1.
*
* @warning This explicitly changes the form of DDX and DDY!
*/
GLboolean radeonTransformDeriv(struct radeon_transform_context* t,
struct prog_instruction* inst,
void* unused)
{
if (inst->Opcode != OPCODE_DDX && inst->Opcode != OPCODE_DDY)
return GL_FALSE;
struct prog_src_register B = inst->SrcReg[1];
B.Swizzle = MAKE_SWIZZLE4(SWIZZLE_ONE, SWIZZLE_ONE,
SWIZZLE_ONE, SWIZZLE_ONE);
B.NegateBase = NEGATE_XYZW;
emit2(t->Program, inst->Opcode, inst->SaturateMode, inst->DstReg,
inst->SrcReg[0], B);
return GL_TRUE;
}