blob: 9f6f4d96f485bc35b81265cf5e3b107398f77c36 [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 7.1
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file dlist.c
* Display lists management functions.
*/
#include "glheader.h"
#include "imports.h"
#include "api_arrayelt.h"
#include "api_loopback.h"
#include "config.h"
#include "attrib.h"
#include "blend.h"
#include "buffers.h"
#if FEATURE_ARB_vertex_buffer_object
#include "bufferobj.h"
#endif
#include "arrayobj.h"
#include "clip.h"
#include "colormac.h"
#include "colortab.h"
#include "context.h"
#include "convolve.h"
#include "depth.h"
#include "dlist.h"
#include "enable.h"
#include "enums.h"
#include "eval.h"
#include "extensions.h"
#include "feedback.h"
#include "get.h"
#include "glapi/glapi.h"
#include "hash.h"
#include "histogram.h"
#include "image.h"
#include "light.h"
#include "lines.h"
#include "dlist.h"
#include "macros.h"
#include "matrix.h"
#include "pixel.h"
#include "points.h"
#include "polygon.h"
#include "queryobj.h"
#include "state.h"
#include "texobj.h"
#include "teximage.h"
#include "texstate.h"
#include "mtypes.h"
#include "varray.h"
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
#include "shader/arbprogram.h"
#include "shader/program.h"
#endif
#if FEATURE_NV_vertex_program || FEATURE_NV_fragment_program
#include "shader/nvprogram.h"
#include "shader/program.h"
#endif
#if FEATURE_ATI_fragment_shader
#include "shader/atifragshader.h"
#endif
#include "math/m_matrix.h"
#include "math/m_xform.h"
#include "glapi/dispatch.h"
/**
* Flush vertices.
*
* \param ctx GL context.
*
* Checks if dd_function_table::SaveNeedFlush is marked to flush
* stored (save) vertices, and calls
* dd_function_table::SaveFlushVertices if so.
*/
#define SAVE_FLUSH_VERTICES(ctx) \
do { \
if (ctx->Driver.SaveNeedFlush) \
ctx->Driver.SaveFlushVertices(ctx); \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair, with return value.
*
* \param ctx GL context.
* \param retval value to return value in case the assertion fails.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval) \
do { \
if (ctx->Driver.CurrentSavePrimitive <= GL_POLYGON || \
ctx->Driver.CurrentSavePrimitive == PRIM_INSIDE_UNKNOWN_PRIM) { \
_mesa_compile_error( ctx, GL_INVALID_OPERATION, "begin/end" ); \
return retval; \
} \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair.
*
* \param ctx GL context.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx) \
do { \
if (ctx->Driver.CurrentSavePrimitive <= GL_POLYGON || \
ctx->Driver.CurrentSavePrimitive == PRIM_INSIDE_UNKNOWN_PRIM) { \
_mesa_compile_error( ctx, GL_INVALID_OPERATION, "begin/end" ); \
return; \
} \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair and flush the vertices.
*
* \param ctx GL context.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx) \
do { \
ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx); \
SAVE_FLUSH_VERTICES(ctx); \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair and flush the vertices, with return value.
*
* \param ctx GL context.
* \param retval value to return value in case the assertion fails.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH_WITH_RETVAL(ctx, retval)\
do { \
ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval); \
SAVE_FLUSH_VERTICES(ctx); \
} while (0)
/**
* Display list opcodes.
*
* The fact that these identifiers are assigned consecutive
* integer values starting at 0 is very important, see InstSize array usage)
*/
typedef enum
{
OPCODE_INVALID = -1, /* Force signed enum */
OPCODE_ACCUM,
OPCODE_ALPHA_FUNC,
OPCODE_BIND_TEXTURE,
OPCODE_BITMAP,
OPCODE_BLEND_COLOR,
OPCODE_BLEND_EQUATION,
OPCODE_BLEND_EQUATION_SEPARATE,
OPCODE_BLEND_FUNC_SEPARATE,
OPCODE_CALL_LIST,
OPCODE_CALL_LIST_OFFSET,
OPCODE_CLEAR,
OPCODE_CLEAR_ACCUM,
OPCODE_CLEAR_COLOR,
OPCODE_CLEAR_DEPTH,
OPCODE_CLEAR_INDEX,
OPCODE_CLEAR_STENCIL,
OPCODE_CLIP_PLANE,
OPCODE_COLOR_MASK,
OPCODE_COLOR_MATERIAL,
OPCODE_COLOR_TABLE,
OPCODE_COLOR_TABLE_PARAMETER_FV,
OPCODE_COLOR_TABLE_PARAMETER_IV,
OPCODE_COLOR_SUB_TABLE,
OPCODE_CONVOLUTION_FILTER_1D,
OPCODE_CONVOLUTION_FILTER_2D,
OPCODE_CONVOLUTION_PARAMETER_I,
OPCODE_CONVOLUTION_PARAMETER_IV,
OPCODE_CONVOLUTION_PARAMETER_F,
OPCODE_CONVOLUTION_PARAMETER_FV,
OPCODE_COPY_COLOR_SUB_TABLE,
OPCODE_COPY_COLOR_TABLE,
OPCODE_COPY_PIXELS,
OPCODE_COPY_TEX_IMAGE1D,
OPCODE_COPY_TEX_IMAGE2D,
OPCODE_COPY_TEX_SUB_IMAGE1D,
OPCODE_COPY_TEX_SUB_IMAGE2D,
OPCODE_COPY_TEX_SUB_IMAGE3D,
OPCODE_CULL_FACE,
OPCODE_DEPTH_FUNC,
OPCODE_DEPTH_MASK,
OPCODE_DEPTH_RANGE,
OPCODE_DISABLE,
OPCODE_DRAW_BUFFER,
OPCODE_DRAW_PIXELS,
OPCODE_ENABLE,
OPCODE_EVALMESH1,
OPCODE_EVALMESH2,
OPCODE_FOG,
OPCODE_FRONT_FACE,
OPCODE_FRUSTUM,
OPCODE_HINT,
OPCODE_HISTOGRAM,
OPCODE_INDEX_MASK,
OPCODE_INIT_NAMES,
OPCODE_LIGHT,
OPCODE_LIGHT_MODEL,
OPCODE_LINE_STIPPLE,
OPCODE_LINE_WIDTH,
OPCODE_LIST_BASE,
OPCODE_LOAD_IDENTITY,
OPCODE_LOAD_MATRIX,
OPCODE_LOAD_NAME,
OPCODE_LOGIC_OP,
OPCODE_MAP1,
OPCODE_MAP2,
OPCODE_MAPGRID1,
OPCODE_MAPGRID2,
OPCODE_MATRIX_MODE,
OPCODE_MIN_MAX,
OPCODE_MULT_MATRIX,
OPCODE_ORTHO,
OPCODE_PASSTHROUGH,
OPCODE_PIXEL_MAP,
OPCODE_PIXEL_TRANSFER,
OPCODE_PIXEL_ZOOM,
OPCODE_POINT_SIZE,
OPCODE_POINT_PARAMETERS,
OPCODE_POLYGON_MODE,
OPCODE_POLYGON_STIPPLE,
OPCODE_POLYGON_OFFSET,
OPCODE_POP_ATTRIB,
OPCODE_POP_MATRIX,
OPCODE_POP_NAME,
OPCODE_PRIORITIZE_TEXTURE,
OPCODE_PUSH_ATTRIB,
OPCODE_PUSH_MATRIX,
OPCODE_PUSH_NAME,
OPCODE_RASTER_POS,
OPCODE_READ_BUFFER,
OPCODE_RESET_HISTOGRAM,
OPCODE_RESET_MIN_MAX,
OPCODE_ROTATE,
OPCODE_SCALE,
OPCODE_SCISSOR,
OPCODE_SELECT_TEXTURE_SGIS,
OPCODE_SELECT_TEXTURE_COORD_SET,
OPCODE_SHADE_MODEL,
OPCODE_STENCIL_FUNC,
OPCODE_STENCIL_MASK,
OPCODE_STENCIL_OP,
OPCODE_TEXENV,
OPCODE_TEXGEN,
OPCODE_TEXPARAMETER,
OPCODE_TEX_IMAGE1D,
OPCODE_TEX_IMAGE2D,
OPCODE_TEX_IMAGE3D,
OPCODE_TEX_SUB_IMAGE1D,
OPCODE_TEX_SUB_IMAGE2D,
OPCODE_TEX_SUB_IMAGE3D,
OPCODE_TRANSLATE,
OPCODE_VIEWPORT,
OPCODE_WINDOW_POS,
/* GL_ARB_multitexture */
OPCODE_ACTIVE_TEXTURE,
/* GL_ARB_texture_compression */
OPCODE_COMPRESSED_TEX_IMAGE_1D,
OPCODE_COMPRESSED_TEX_IMAGE_2D,
OPCODE_COMPRESSED_TEX_IMAGE_3D,
OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D,
OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D,
OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D,
/* GL_ARB_multisample */
OPCODE_SAMPLE_COVERAGE,
/* GL_ARB_window_pos */
OPCODE_WINDOW_POS_ARB,
/* GL_NV_vertex_program */
OPCODE_BIND_PROGRAM_NV,
OPCODE_EXECUTE_PROGRAM_NV,
OPCODE_REQUEST_RESIDENT_PROGRAMS_NV,
OPCODE_LOAD_PROGRAM_NV,
OPCODE_TRACK_MATRIX_NV,
/* GL_NV_fragment_program */
OPCODE_PROGRAM_LOCAL_PARAMETER_ARB,
OPCODE_PROGRAM_NAMED_PARAMETER_NV,
/* GL_EXT_stencil_two_side */
OPCODE_ACTIVE_STENCIL_FACE_EXT,
/* GL_EXT_depth_bounds_test */
OPCODE_DEPTH_BOUNDS_EXT,
/* GL_ARB_vertex/fragment_program */
OPCODE_PROGRAM_STRING_ARB,
OPCODE_PROGRAM_ENV_PARAMETER_ARB,
/* GL_ARB_occlusion_query */
OPCODE_BEGIN_QUERY_ARB,
OPCODE_END_QUERY_ARB,
/* GL_ARB_draw_buffers */
OPCODE_DRAW_BUFFERS_ARB,
/* GL_ATI_fragment_shader */
OPCODE_BIND_FRAGMENT_SHADER_ATI,
OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI,
/* OpenGL 2.0 */
OPCODE_STENCIL_FUNC_SEPARATE,
OPCODE_STENCIL_OP_SEPARATE,
OPCODE_STENCIL_MASK_SEPARATE,
/* GL_EXT_framebuffer_blit */
OPCODE_BLIT_FRAMEBUFFER,
/* Vertex attributes -- fallback for when optimized display
* list build isn't active.
*/
OPCODE_ATTR_1F_NV,
OPCODE_ATTR_2F_NV,
OPCODE_ATTR_3F_NV,
OPCODE_ATTR_4F_NV,
OPCODE_ATTR_1F_ARB,
OPCODE_ATTR_2F_ARB,
OPCODE_ATTR_3F_ARB,
OPCODE_ATTR_4F_ARB,
OPCODE_MATERIAL,
OPCODE_BEGIN,
OPCODE_END,
OPCODE_RECTF,
OPCODE_EVAL_C1,
OPCODE_EVAL_C2,
OPCODE_EVAL_P1,
OPCODE_EVAL_P2,
/* The following three are meta instructions */
OPCODE_ERROR, /* raise compiled-in error */
OPCODE_CONTINUE,
OPCODE_END_OF_LIST,
OPCODE_EXT_0
} OpCode;
/**
* Display list node.
*
* Display list instructions are stored as sequences of "nodes". Nodes
* are allocated in blocks. Each block has BLOCK_SIZE nodes. Blocks
* are linked together with a pointer.
*
* Each instruction in the display list is stored as a sequence of
* contiguous nodes in memory.
* Each node is the union of a variety of data types.
*/
union node
{
OpCode opcode;
GLboolean b;
GLbitfield bf;
GLubyte ub;
GLshort s;
GLushort us;
GLint i;
GLuint ui;
GLenum e;
GLfloat f;
GLvoid *data;
void *next; /* If prev node's opcode==OPCODE_CONTINUE */
};
/**
* How many nodes to allocate at a time.
*
* \note Reduced now that we hold vertices etc. elsewhere.
*/
#define BLOCK_SIZE 256
/**
* Number of nodes of storage needed for each instruction.
* Sizes for dynamically allocated opcodes are stored in the context struct.
*/
static GLuint InstSize[OPCODE_END_OF_LIST + 1];
void mesa_print_display_list(GLuint list);
/**********************************************************************/
/***** Private *****/
/**********************************************************************/
/**
* Make an empty display list. This is used by glGenLists() to
* reserve display list IDs.
*/
static struct mesa_display_list *
make_list(GLuint list, GLuint count)
{
struct mesa_display_list *dlist = CALLOC_STRUCT(mesa_display_list);
dlist->id = list;
dlist->node = (Node *) _mesa_malloc(sizeof(Node) * count);
dlist->node[0].opcode = OPCODE_END_OF_LIST;
return dlist;
}
/**
* Lookup function to just encapsulate casting.
*/
static INLINE struct mesa_display_list *
lookup_list(GLcontext *ctx, GLuint list)
{
return (struct mesa_display_list *)
_mesa_HashLookup(ctx->Shared->DisplayList, list);
}
/**
* Delete the named display list, but don't remove from hash table.
* \param dlist - display list pointer
*/
void
_mesa_delete_list(GLcontext *ctx, struct mesa_display_list *dlist)
{
Node *n, *block;
GLboolean done;
n = block = dlist->node;
done = block ? GL_FALSE : GL_TRUE;
while (!done) {
/* check for extension opcodes first */
GLint i = (GLint) n[0].opcode - (GLint) OPCODE_EXT_0;
if (i >= 0 && i < (GLint) ctx->ListExt.NumOpcodes) {
ctx->ListExt.Opcode[i].Destroy(ctx, &n[1]);
n += ctx->ListExt.Opcode[i].Size;
}
else {
switch (n[0].opcode) {
/* for some commands, we need to free malloc'd memory */
case OPCODE_MAP1:
_mesa_free(n[6].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_MAP2:
_mesa_free(n[10].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_DRAW_PIXELS:
_mesa_free(n[5].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_BITMAP:
_mesa_free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COLOR_TABLE:
_mesa_free(n[6].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COLOR_SUB_TABLE:
_mesa_free(n[6].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_CONVOLUTION_FILTER_1D:
_mesa_free(n[6].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_CONVOLUTION_FILTER_2D:
_mesa_free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_POLYGON_STIPPLE:
_mesa_free(n[1].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE1D:
_mesa_free(n[8].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE2D:
_mesa_free(n[9].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE3D:
_mesa_free(n[10].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE1D:
_mesa_free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE2D:
_mesa_free(n[9].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE3D:
_mesa_free(n[11].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_IMAGE_1D:
_mesa_free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_IMAGE_2D:
_mesa_free(n[8].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_IMAGE_3D:
_mesa_free(n[9].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D:
_mesa_free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D:
_mesa_free(n[9].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D:
_mesa_free(n[11].data);
n += InstSize[n[0].opcode];
break;
#if FEATURE_NV_vertex_program
case OPCODE_LOAD_PROGRAM_NV:
_mesa_free(n[4].data); /* program string */
n += InstSize[n[0].opcode];
break;
case OPCODE_REQUEST_RESIDENT_PROGRAMS_NV:
_mesa_free(n[2].data); /* array of program ids */
n += InstSize[n[0].opcode];
break;
#endif
#if FEATURE_NV_fragment_program
case OPCODE_PROGRAM_NAMED_PARAMETER_NV:
_mesa_free(n[3].data); /* parameter name */
n += InstSize[n[0].opcode];
break;
#endif
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
case OPCODE_PROGRAM_STRING_ARB:
_mesa_free(n[4].data); /* program string */
n += InstSize[n[0].opcode];
break;
#endif
case OPCODE_CONTINUE:
n = (Node *) n[1].next;
_mesa_free(block);
block = n;
break;
case OPCODE_END_OF_LIST:
_mesa_free(block);
done = GL_TRUE;
break;
default:
/* Most frequent case */
n += InstSize[n[0].opcode];
break;
}
}
}
_mesa_free(dlist);
}
/**
* Destroy a display list and remove from hash table.
* \param list - display list number
*/
static void
destroy_list(GLcontext *ctx, GLuint list)
{
struct mesa_display_list *dlist;
if (list == 0)
return;
dlist = lookup_list(ctx, list);
if (!dlist)
return;
_mesa_delete_list(ctx, dlist);
_mesa_HashRemove(ctx->Shared->DisplayList, list);
}
/*
* Translate the nth element of list from <type> to GLint.
*/
static GLint
translate_id(GLsizei n, GLenum type, const GLvoid * list)
{
GLbyte *bptr;
GLubyte *ubptr;
GLshort *sptr;
GLushort *usptr;
GLint *iptr;
GLuint *uiptr;
GLfloat *fptr;
switch (type) {
case GL_BYTE:
bptr = (GLbyte *) list;
return (GLint) bptr[n];
case GL_UNSIGNED_BYTE:
ubptr = (GLubyte *) list;
return (GLint) ubptr[n];
case GL_SHORT:
sptr = (GLshort *) list;
return (GLint) sptr[n];
case GL_UNSIGNED_SHORT:
usptr = (GLushort *) list;
return (GLint) usptr[n];
case GL_INT:
iptr = (GLint *) list;
return iptr[n];
case GL_UNSIGNED_INT:
uiptr = (GLuint *) list;
return (GLint) uiptr[n];
case GL_FLOAT:
fptr = (GLfloat *) list;
return (GLint) FLOORF(fptr[n]);
case GL_2_BYTES:
ubptr = ((GLubyte *) list) + 2 * n;
return (GLint) ubptr[0] * 256
+ (GLint) ubptr[1];
case GL_3_BYTES:
ubptr = ((GLubyte *) list) + 3 * n;
return (GLint) ubptr[0] * 65536
+ (GLint) ubptr[1] * 256
+ (GLint) ubptr[2];
case GL_4_BYTES:
ubptr = ((GLubyte *) list) + 4 * n;
return (GLint) ubptr[0] * 16777216
+ (GLint) ubptr[1] * 65536
+ (GLint) ubptr[2] * 256
+ (GLint) ubptr[3];
default:
return 0;
}
}
/**********************************************************************/
/***** Public *****/
/**********************************************************************/
/**
* Wrapper for _mesa_unpack_image() that handles pixel buffer objects.
* \todo This won't suffice when the PBO is really in VRAM/GPU memory.
*/
static GLvoid *
unpack_image(GLuint dimensions, GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const GLvoid * pixels,
const struct gl_pixelstore_attrib *unpack)
{
if (unpack->BufferObj->Name == 0) {
/* no PBO */
return _mesa_unpack_image(dimensions, width, height, depth, format,
type, pixels, unpack);
}
else
if (_mesa_validate_pbo_access
(dimensions, unpack, width, height, depth, format, type, pixels)) {
const GLubyte *src = ADD_POINTERS(unpack->BufferObj->Data, pixels);
return _mesa_unpack_image(dimensions, width, height, depth, format,
type, src, unpack);
}
/* bad access! */
return NULL;
}
/**
* Allocate space for a display list instruction.
* \param opcode the instruction opcode (OPCODE_* value)
* \param size instruction size in bytes, not counting opcode.
* \return pointer to the usable data area (not including the internal
* opcode).
*/
void *
_mesa_alloc_instruction(GLcontext *ctx, GLuint opcode, GLuint bytes)
{
const GLuint numNodes = 1 + (bytes + sizeof(Node) - 1) / sizeof(Node);
Node *n;
if (opcode < (GLuint) OPCODE_EXT_0) {
if (InstSize[opcode] == 0) {
/* save instruction size now */
InstSize[opcode] = numNodes;
}
else {
/* make sure instruction size agrees */
ASSERT(numNodes == InstSize[opcode]);
}
}
if (ctx->ListState.CurrentPos + numNodes + 2 > BLOCK_SIZE) {
/* This block is full. Allocate a new block and chain to it */
Node *newblock;
n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos;
n[0].opcode = OPCODE_CONTINUE;
newblock = (Node *) _mesa_malloc(sizeof(Node) * BLOCK_SIZE);
if (!newblock) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "Building display list");
return NULL;
}
n[1].next = (Node *) newblock;
ctx->ListState.CurrentBlock = newblock;
ctx->ListState.CurrentPos = 0;
}
n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos;
ctx->ListState.CurrentPos += numNodes;
n[0].opcode = (OpCode) opcode;
return (void *) (n + 1); /* return ptr to node following opcode */
}
/**
* This function allows modules and drivers to get their own opcodes
* for extending display list functionality.
* \param ctx the rendering context
* \param size number of bytes for storing the new display list command
* \param execute function to execute the new display list command
* \param destroy function to destroy the new display list command
* \param print function to print the new display list command
* \return the new opcode number or -1 if error
*/
GLint
_mesa_alloc_opcode(GLcontext *ctx,
GLuint size,
void (*execute) (GLcontext *, void *),
void (*destroy) (GLcontext *, void *),
void (*print) (GLcontext *, void *))
{
if (ctx->ListExt.NumOpcodes < MAX_DLIST_EXT_OPCODES) {
const GLuint i = ctx->ListExt.NumOpcodes++;
ctx->ListExt.Opcode[i].Size =
1 + (size + sizeof(Node) - 1) / sizeof(Node);
ctx->ListExt.Opcode[i].Execute = execute;
ctx->ListExt.Opcode[i].Destroy = destroy;
ctx->ListExt.Opcode[i].Print = print;
return i + OPCODE_EXT_0;
}
return -1;
}
/**
* Allocate display list instruction. Returns Node ptr to where the opcode
* is stored.
* - nParams is the number of function parameters
* - return value a pointer to sizeof(Node) before the actual
* usable data area.
*/
#define ALLOC_INSTRUCTION(CTX, OPCODE, NPARAMS) \
((Node *)_mesa_alloc_instruction(CTX, OPCODE, (NPARAMS)*sizeof(Node)) - 1)
/*
* Display List compilation functions
*/
static void GLAPIENTRY
save_Accum(GLenum op, GLfloat value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ACCUM, 2);
if (n) {
n[1].e = op;
n[2].f = value;
}
if (ctx->ExecuteFlag) {
CALL_Accum(ctx->Exec, (op, value));
}
}
static void GLAPIENTRY
save_AlphaFunc(GLenum func, GLclampf ref)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ALPHA_FUNC, 2);
if (n) {
n[1].e = func;
n[2].f = (GLfloat) ref;
}
if (ctx->ExecuteFlag) {
CALL_AlphaFunc(ctx->Exec, (func, ref));
}
}
static void GLAPIENTRY
save_BindTexture(GLenum target, GLuint texture)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BIND_TEXTURE, 2);
if (n) {
n[1].e = target;
n[2].ui = texture;
}
if (ctx->ExecuteFlag) {
CALL_BindTexture(ctx->Exec, (target, texture));
}
}
static void GLAPIENTRY
save_Bitmap(GLsizei width, GLsizei height,
GLfloat xorig, GLfloat yorig,
GLfloat xmove, GLfloat ymove, const GLubyte * pixels)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image = _mesa_unpack_bitmap(width, height, pixels, &ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BITMAP, 7);
if (n) {
n[1].i = (GLint) width;
n[2].i = (GLint) height;
n[3].f = xorig;
n[4].f = yorig;
n[5].f = xmove;
n[6].f = ymove;
n[7].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_Bitmap(ctx->Exec, (width, height,
xorig, yorig, xmove, ymove, pixels));
}
}
static void GLAPIENTRY
save_BlendEquation(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BLEND_EQUATION, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_BlendEquation(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_BlendEquationSeparateEXT(GLenum modeRGB, GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BLEND_EQUATION_SEPARATE, 2);
if (n) {
n[1].e = modeRGB;
n[2].e = modeA;
}
if (ctx->ExecuteFlag) {
CALL_BlendEquationSeparateEXT(ctx->Exec, (modeRGB, modeA));
}
}
static void GLAPIENTRY
save_BlendFuncSeparateEXT(GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BLEND_FUNC_SEPARATE, 4);
if (n) {
n[1].e = sfactorRGB;
n[2].e = dfactorRGB;
n[3].e = sfactorA;
n[4].e = dfactorA;
}
if (ctx->ExecuteFlag) {
CALL_BlendFuncSeparateEXT(ctx->Exec,
(sfactorRGB, dfactorRGB, sfactorA, dfactorA));
}
}
static void GLAPIENTRY
save_BlendColor(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BLEND_COLOR, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_BlendColor(ctx->Exec, (red, green, blue, alpha));
}
}
void GLAPIENTRY
_mesa_save_CallList(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CALL_LIST, 1);
if (n) {
n[1].ui = list;
}
/* After this, we don't know what begin/end state we're in:
*/
ctx->Driver.CurrentSavePrimitive = PRIM_UNKNOWN;
if (ctx->ExecuteFlag) {
CALL_CallList(ctx->Exec, (list));
}
}
void GLAPIENTRY
_mesa_save_CallLists(GLsizei n, GLenum type, const GLvoid * lists)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
GLboolean typeErrorFlag;
SAVE_FLUSH_VERTICES(ctx);
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
typeErrorFlag = GL_FALSE;
break;
default:
typeErrorFlag = GL_TRUE;
}
for (i = 0; i < n; i++) {
GLint list = translate_id(i, type, lists);
Node *n = ALLOC_INSTRUCTION(ctx, OPCODE_CALL_LIST_OFFSET, 2);
if (n) {
n[1].i = list;
n[2].b = typeErrorFlag;
}
}
/* After this, we don't know what begin/end state we're in:
*/
ctx->Driver.CurrentSavePrimitive = PRIM_UNKNOWN;
if (ctx->ExecuteFlag) {
CALL_CallLists(ctx->Exec, (n, type, lists));
}
}
static void GLAPIENTRY
save_Clear(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLEAR, 1);
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
CALL_Clear(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_ClearAccum(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLEAR_ACCUM, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearAccum(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLEAR_COLOR, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColor(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ClearDepth(GLclampd depth)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLEAR_DEPTH, 1);
if (n) {
n[1].f = (GLfloat) depth;
}
if (ctx->ExecuteFlag) {
CALL_ClearDepth(ctx->Exec, (depth));
}
}
static void GLAPIENTRY
save_ClearIndex(GLfloat c)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLEAR_INDEX, 1);
if (n) {
n[1].f = c;
}
if (ctx->ExecuteFlag) {
CALL_ClearIndex(ctx->Exec, (c));
}
}
static void GLAPIENTRY
save_ClearStencil(GLint s)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLEAR_STENCIL, 1);
if (n) {
n[1].i = s;
}
if (ctx->ExecuteFlag) {
CALL_ClearStencil(ctx->Exec, (s));
}
}
static void GLAPIENTRY
save_ClipPlane(GLenum plane, const GLdouble * equ)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CLIP_PLANE, 5);
if (n) {
n[1].e = plane;
n[2].f = (GLfloat) equ[0];
n[3].f = (GLfloat) equ[1];
n[4].f = (GLfloat) equ[2];
n[5].f = (GLfloat) equ[3];
}
if (ctx->ExecuteFlag) {
CALL_ClipPlane(ctx->Exec, (plane, equ));
}
}
static void GLAPIENTRY
save_ColorMask(GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COLOR_MASK, 4);
if (n) {
n[1].b = red;
n[2].b = green;
n[3].b = blue;
n[4].b = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ColorMask(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ColorMaterial(GLenum face, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COLOR_MATERIAL, 2);
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ColorMaterial(ctx->Exec, (face, mode));
}
}
static void GLAPIENTRY
save_ColorTable(GLenum target, GLenum internalFormat,
GLsizei width, GLenum format, GLenum type,
const GLvoid * table)
{
GET_CURRENT_CONTEXT(ctx);
if (_mesa_is_proxy_texture(target)) {
/* execute immediately */
CALL_ColorTable(ctx->Exec, (target, internalFormat, width,
format, type, table));
}
else {
GLvoid *image = unpack_image(1, width, 1, 1, format, type, table,
&ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COLOR_TABLE, 6);
if (n) {
n[1].e = target;
n[2].e = internalFormat;
n[3].i = width;
n[4].e = format;
n[5].e = type;
n[6].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_ColorTable(ctx->Exec, (target, internalFormat, width,
format, type, table));
}
}
}
static void GLAPIENTRY
save_ColorTableParameterfv(GLenum target, GLenum pname,
const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COLOR_TABLE_PARAMETER_FV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
if (pname == GL_COLOR_TABLE_SGI ||
pname == GL_POST_CONVOLUTION_COLOR_TABLE_SGI ||
pname == GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI ||
pname == GL_TEXTURE_COLOR_TABLE_SGI) {
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
}
if (ctx->ExecuteFlag) {
CALL_ColorTableParameterfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_ColorTableParameteriv(GLenum target, GLenum pname, const GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COLOR_TABLE_PARAMETER_IV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].i = params[0];
if (pname == GL_COLOR_TABLE_SGI ||
pname == GL_POST_CONVOLUTION_COLOR_TABLE_SGI ||
pname == GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI ||
pname == GL_TEXTURE_COLOR_TABLE_SGI) {
n[4].i = params[1];
n[5].i = params[2];
n[6].i = params[3];
}
}
if (ctx->ExecuteFlag) {
CALL_ColorTableParameteriv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_ColorSubTable(GLenum target, GLsizei start, GLsizei count,
GLenum format, GLenum type, const GLvoid * table)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image = unpack_image(1, count, 1, 1, format, type, table,
&ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COLOR_SUB_TABLE, 6);
if (n) {
n[1].e = target;
n[2].i = start;
n[3].i = count;
n[4].e = format;
n[5].e = type;
n[6].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_ColorSubTable(ctx->Exec,
(target, start, count, format, type, table));
}
}
static void GLAPIENTRY
save_CopyColorSubTable(GLenum target, GLsizei start,
GLint x, GLint y, GLsizei width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_COLOR_SUB_TABLE, 5);
if (n) {
n[1].e = target;
n[2].i = start;
n[3].i = x;
n[4].i = y;
n[5].i = width;
}
if (ctx->ExecuteFlag) {
CALL_CopyColorSubTable(ctx->Exec, (target, start, x, y, width));
}
}
static void GLAPIENTRY
save_CopyColorTable(GLenum target, GLenum internalformat,
GLint x, GLint y, GLsizei width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_COLOR_TABLE, 5);
if (n) {
n[1].e = target;
n[2].e = internalformat;
n[3].i = x;
n[4].i = y;
n[5].i = width;
}
if (ctx->ExecuteFlag) {
CALL_CopyColorTable(ctx->Exec, (target, internalformat, x, y, width));
}
}
static void GLAPIENTRY
save_ConvolutionFilter1D(GLenum target, GLenum internalFormat, GLsizei width,
GLenum format, GLenum type, const GLvoid * filter)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image = unpack_image(1, width, 1, 1, format, type, filter,
&ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CONVOLUTION_FILTER_1D, 6);
if (n) {
n[1].e = target;
n[2].e = internalFormat;
n[3].i = width;
n[4].e = format;
n[5].e = type;
n[6].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_ConvolutionFilter1D(ctx->Exec, (target, internalFormat, width,
format, type, filter));
}
}
static void GLAPIENTRY
save_ConvolutionFilter2D(GLenum target, GLenum internalFormat,
GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid * filter)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image = unpack_image(2, width, height, 1, format, type, filter,
&ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CONVOLUTION_FILTER_2D, 7);
if (n) {
n[1].e = target;
n[2].e = internalFormat;
n[3].i = width;
n[4].i = height;
n[5].e = format;
n[6].e = type;
n[7].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_ConvolutionFilter2D(ctx->Exec,
(target, internalFormat, width, height, format,
type, filter));
}
}
static void GLAPIENTRY
save_ConvolutionParameteri(GLenum target, GLenum pname, GLint param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CONVOLUTION_PARAMETER_I, 3);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].i = param;
}
if (ctx->ExecuteFlag) {
CALL_ConvolutionParameteri(ctx->Exec, (target, pname, param));
}
}
static void GLAPIENTRY
save_ConvolutionParameteriv(GLenum target, GLenum pname, const GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CONVOLUTION_PARAMETER_IV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].i = params[0];
if (pname == GL_CONVOLUTION_BORDER_COLOR ||
pname == GL_CONVOLUTION_FILTER_SCALE ||
pname == GL_CONVOLUTION_FILTER_BIAS) {
n[4].i = params[1];
n[5].i = params[2];
n[6].i = params[3];
}
else {
n[4].i = n[5].i = n[6].i = 0;
}
}
if (ctx->ExecuteFlag) {
CALL_ConvolutionParameteriv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_ConvolutionParameterf(GLenum target, GLenum pname, GLfloat param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CONVOLUTION_PARAMETER_F, 3);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = param;
}
if (ctx->ExecuteFlag) {
CALL_ConvolutionParameterf(ctx->Exec, (target, pname, param));
}
}
static void GLAPIENTRY
save_ConvolutionParameterfv(GLenum target, GLenum pname,
const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CONVOLUTION_PARAMETER_FV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
if (pname == GL_CONVOLUTION_BORDER_COLOR ||
pname == GL_CONVOLUTION_FILTER_SCALE ||
pname == GL_CONVOLUTION_FILTER_BIAS) {
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
else {
n[4].f = n[5].f = n[6].f = 0.0F;
}
}
if (ctx->ExecuteFlag) {
CALL_ConvolutionParameterfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_CopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_PIXELS, 5);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
n[5].e = type;
}
if (ctx->ExecuteFlag) {
CALL_CopyPixels(ctx->Exec, (x, y, width, height, type));
}
}
static void GLAPIENTRY
save_CopyTexImage1D(GLenum target, GLint level, GLenum internalformat,
GLint x, GLint y, GLsizei width, GLint border)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_TEX_IMAGE1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = border;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexImage1D(ctx->Exec, (target, level, internalformat,
x, y, width, border));
}
}
static void GLAPIENTRY
save_CopyTexImage2D(GLenum target, GLint level,
GLenum internalformat,
GLint x, GLint y, GLsizei width,
GLsizei height, GLint border)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_TEX_IMAGE2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = height;
n[8].i = border;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexImage2D(ctx->Exec, (target, level, internalformat,
x, y, width, height, border));
}
}
static void GLAPIENTRY
save_CopyTexSubImage1D(GLenum target, GLint level,
GLint xoffset, GLint x, GLint y, GLsizei width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_TEX_SUB_IMAGE1D, 6);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = x;
n[5].i = y;
n[6].i = width;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage1D(ctx->Exec,
(target, level, xoffset, x, y, width));
}
}
static void GLAPIENTRY
save_CopyTexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint x, GLint y, GLsizei width, GLint height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_TEX_SUB_IMAGE2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = x;
n[6].i = y;
n[7].i = width;
n[8].i = height;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset,
x, y, width, height));
}
}
static void GLAPIENTRY
save_CopyTexSubImage3D(GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y, GLsizei width, GLint height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COPY_TEX_SUB_IMAGE3D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = zoffset;
n[6].i = x;
n[7].i = y;
n[8].i = width;
n[9].i = height;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage3D(ctx->Exec, (target, level,
xoffset, yoffset, zoffset,
x, y, width, height));
}
}
static void GLAPIENTRY
save_CullFace(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_CULL_FACE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_CullFace(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_DepthFunc(GLenum func)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DEPTH_FUNC, 1);
if (n) {
n[1].e = func;
}
if (ctx->ExecuteFlag) {
CALL_DepthFunc(ctx->Exec, (func));
}
}
static void GLAPIENTRY
save_DepthMask(GLboolean mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DEPTH_MASK, 1);
if (n) {
n[1].b = mask;
}
if (ctx->ExecuteFlag) {
CALL_DepthMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_DepthRange(GLclampd nearval, GLclampd farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DEPTH_RANGE, 2);
if (n) {
n[1].f = (GLfloat) nearval;
n[2].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_DepthRange(ctx->Exec, (nearval, farval));
}
}
static void GLAPIENTRY
save_Disable(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DISABLE, 1);
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Disable(ctx->Exec, (cap));
}
}
static void GLAPIENTRY
save_DrawBuffer(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DRAW_BUFFER, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_DrawBuffer(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_DrawPixels(GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image = unpack_image(2, width, height, 1, format, type,
pixels, &ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DRAW_PIXELS, 5);
if (n) {
n[1].i = width;
n[2].i = height;
n[3].e = format;
n[4].e = type;
n[5].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_DrawPixels(ctx->Exec, (width, height, format, type, pixels));
}
}
static void GLAPIENTRY
save_Enable(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ENABLE, 1);
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Enable(ctx->Exec, (cap));
}
}
static void GLAPIENTRY
_mesa_save_EvalMesh1(GLenum mode, GLint i1, GLint i2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EVALMESH1, 3);
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
}
if (ctx->ExecuteFlag) {
CALL_EvalMesh1(ctx->Exec, (mode, i1, i2));
}
}
static void GLAPIENTRY
_mesa_save_EvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EVALMESH2, 5);
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
n[4].i = j1;
n[5].i = j2;
}
if (ctx->ExecuteFlag) {
CALL_EvalMesh2(ctx->Exec, (mode, i1, i2, j1, j2));
}
}
static void GLAPIENTRY
save_Fogfv(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_FOG, 5);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_Fogfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_Fogf(GLenum pname, GLfloat param)
{
save_Fogfv(pname, &param);
}
static void GLAPIENTRY
save_Fogiv(GLenum pname, const GLint *params)
{
GLfloat p[4];
switch (pname) {
case GL_FOG_MODE:
case GL_FOG_DENSITY:
case GL_FOG_START:
case GL_FOG_END:
case GL_FOG_INDEX:
p[0] = (GLfloat) *params;
break;
case GL_FOG_COLOR:
p[0] = INT_TO_FLOAT(params[0]);
p[1] = INT_TO_FLOAT(params[1]);
p[2] = INT_TO_FLOAT(params[2]);
p[3] = INT_TO_FLOAT(params[3]);
break;
default:
/* Error will be caught later in gl_Fogfv */
;
}
save_Fogfv(pname, p);
}
static void GLAPIENTRY
save_Fogi(GLenum pname, GLint param)
{
save_Fogiv(pname, &param);
}
static void GLAPIENTRY
save_FrontFace(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_FRONT_FACE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_FrontFace(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_Frustum(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_FRUSTUM, 6);
if (n) {
n[1].f = (GLfloat) left;
n[2].f = (GLfloat) right;
n[3].f = (GLfloat) bottom;
n[4].f = (GLfloat) top;
n[5].f = (GLfloat) nearval;
n[6].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_Frustum(ctx->Exec, (left, right, bottom, top, nearval, farval));
}
}
static void GLAPIENTRY
save_Hint(GLenum target, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_HINT, 2);
if (n) {
n[1].e = target;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_Hint(ctx->Exec, (target, mode));
}
}
static void GLAPIENTRY
save_Histogram(GLenum target, GLsizei width, GLenum internalFormat,
GLboolean sink)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_HISTOGRAM, 4);
if (n) {
n[1].e = target;
n[2].i = width;
n[3].e = internalFormat;
n[4].b = sink;
}
if (ctx->ExecuteFlag) {
CALL_Histogram(ctx->Exec, (target, width, internalFormat, sink));
}
}
static void GLAPIENTRY
save_IndexMask(GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_INDEX_MASK, 1);
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_IndexMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_InitNames(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_INIT_NAMES, 0);
if (ctx->ExecuteFlag) {
CALL_InitNames(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_Lightfv(GLenum light, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LIGHT, 6);
if (OPCODE_LIGHT) {
GLint i, nParams;
n[1].e = light;
n[2].e = pname;
switch (pname) {
case GL_AMBIENT:
nParams = 4;
break;
case GL_DIFFUSE:
nParams = 4;
break;
case GL_SPECULAR:
nParams = 4;
break;
case GL_POSITION:
nParams = 4;
break;
case GL_SPOT_DIRECTION:
nParams = 3;
break;
case GL_SPOT_EXPONENT:
nParams = 1;
break;
case GL_SPOT_CUTOFF:
nParams = 1;
break;
case GL_CONSTANT_ATTENUATION:
nParams = 1;
break;
case GL_LINEAR_ATTENUATION:
nParams = 1;
break;
case GL_QUADRATIC_ATTENUATION:
nParams = 1;
break;
default:
nParams = 0;
}
for (i = 0; i < nParams; i++) {
n[3 + i].f = params[i];
}
}
if (ctx->ExecuteFlag) {
CALL_Lightfv(ctx->Exec, (light, pname, params));
}
}
static void GLAPIENTRY
save_Lightf(GLenum light, GLenum pname, GLfloat params)
{
save_Lightfv(light, pname, &params);
}
static void GLAPIENTRY
save_Lightiv(GLenum light, GLenum pname, const GLint *params)
{
GLfloat fparam[4];
switch (pname) {
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
fparam[0] = INT_TO_FLOAT(params[0]);
fparam[1] = INT_TO_FLOAT(params[1]);
fparam[2] = INT_TO_FLOAT(params[2]);
fparam[3] = INT_TO_FLOAT(params[3]);
break;
case GL_POSITION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
fparam[3] = (GLfloat) params[3];
break;
case GL_SPOT_DIRECTION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
break;
case GL_SPOT_EXPONENT:
case GL_SPOT_CUTOFF:
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
fparam[0] = (GLfloat) params[0];
break;
default:
/* error will be caught later in gl_Lightfv */
;
}
save_Lightfv(light, pname, fparam);
}
static void GLAPIENTRY
save_Lighti(GLenum light, GLenum pname, GLint param)
{
save_Lightiv(light, pname, &param);
}
static void GLAPIENTRY
save_LightModelfv(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LIGHT_MODEL, 5);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_LightModelfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_LightModelf(GLenum pname, GLfloat param)
{
save_LightModelfv(pname, &param);
}
static void GLAPIENTRY
save_LightModeliv(GLenum pname, const GLint *params)
{
GLfloat fparam[4];
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
fparam[0] = INT_TO_FLOAT(params[0]);
fparam[1] = INT_TO_FLOAT(params[1]);
fparam[2] = INT_TO_FLOAT(params[2]);
fparam[3] = INT_TO_FLOAT(params[3]);
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
case GL_LIGHT_MODEL_TWO_SIDE:
case GL_LIGHT_MODEL_COLOR_CONTROL:
fparam[0] = (GLfloat) params[0];
break;
default:
/* Error will be caught later in gl_LightModelfv */
;
}
save_LightModelfv(pname, fparam);
}
static void GLAPIENTRY
save_LightModeli(GLenum pname, GLint param)
{
save_LightModeliv(pname, &param);
}
static void GLAPIENTRY
save_LineStipple(GLint factor, GLushort pattern)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LINE_STIPPLE, 2);
if (n) {
n[1].i = factor;
n[2].us = pattern;
}
if (ctx->ExecuteFlag) {
CALL_LineStipple(ctx->Exec, (factor, pattern));
}
}
static void GLAPIENTRY
save_LineWidth(GLfloat width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LINE_WIDTH, 1);
if (n) {
n[1].f = width;
}
if (ctx->ExecuteFlag) {
CALL_LineWidth(ctx->Exec, (width));
}
}
static void GLAPIENTRY
save_ListBase(GLuint base)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LIST_BASE, 1);
if (n) {
n[1].ui = base;
}
if (ctx->ExecuteFlag) {
CALL_ListBase(ctx->Exec, (base));
}
}
static void GLAPIENTRY
save_LoadIdentity(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_LOAD_IDENTITY, 0);
if (ctx->ExecuteFlag) {
CALL_LoadIdentity(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_LoadMatrixf(const GLfloat * m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LOAD_MATRIX, 16);
if (n) {
GLuint i;
for (i = 0; i < 16; i++) {
n[1 + i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
CALL_LoadMatrixf(ctx->Exec, (m));
}
}
static void GLAPIENTRY
save_LoadMatrixd(const GLdouble * m)
{
GLfloat f[16];
GLint i;
for (i = 0; i < 16; i++) {
f[i] = (GLfloat) m[i];
}
save_LoadMatrixf(f);
}
static void GLAPIENTRY
save_LoadName(GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LOAD_NAME, 1);
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_LoadName(ctx->Exec, (name));
}
}
static void GLAPIENTRY
save_LogicOp(GLenum opcode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LOGIC_OP, 1);
if (n) {
n[1].e = opcode;
}
if (ctx->ExecuteFlag) {
CALL_LogicOp(ctx->Exec, (opcode));
}
}
static void GLAPIENTRY
save_Map1d(GLenum target, GLdouble u1, GLdouble u2, GLint stride,
GLint order, const GLdouble * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MAP1, 6);
if (n) {
GLfloat *pnts = _mesa_copy_map_points1d(target, stride, order, points);
n[1].e = target;
n[2].f = (GLfloat) u1;
n[3].f = (GLfloat) u2;
n[4].i = _mesa_evaluator_components(target); /* stride */
n[5].i = order;
n[6].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map1d(ctx->Exec, (target, u1, u2, stride, order, points));
}
}
static void GLAPIENTRY
save_Map1f(GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MAP1, 6);
if (n) {
GLfloat *pnts = _mesa_copy_map_points1f(target, stride, order, points);
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].i = _mesa_evaluator_components(target); /* stride */
n[5].i = order;
n[6].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map1f(ctx->Exec, (target, u1, u2, stride, order, points));
}
}
static void GLAPIENTRY
save_Map2d(GLenum target,
GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
const GLdouble * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MAP2, 10);
if (n) {
GLfloat *pnts = _mesa_copy_map_points2d(target, ustride, uorder,
vstride, vorder, points);
n[1].e = target;
n[2].f = (GLfloat) u1;
n[3].f = (GLfloat) u2;
n[4].f = (GLfloat) v1;
n[5].f = (GLfloat) v2;
/* XXX verify these strides are correct */
n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */
n[7].i = _mesa_evaluator_components(target); /*vstride */
n[8].i = uorder;
n[9].i = vorder;
n[10].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map2d(ctx->Exec, (target,
u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points));
}
}
static void GLAPIENTRY
save_Map2f(GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MAP2, 10);
if (n) {
GLfloat *pnts = _mesa_copy_map_points2f(target, ustride, uorder,
vstride, vorder, points);
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].f = v1;
n[5].f = v2;
/* XXX verify these strides are correct */
n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */
n[7].i = _mesa_evaluator_components(target); /*vstride */
n[8].i = uorder;
n[9].i = vorder;
n[10].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points));
}
}
static void GLAPIENTRY
save_MapGrid1f(GLint un, GLfloat u1, GLfloat u2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MAPGRID1, 3);
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
}
if (ctx->ExecuteFlag) {
CALL_MapGrid1f(ctx->Exec, (un, u1, u2));
}
}
static void GLAPIENTRY
save_MapGrid1d(GLint un, GLdouble u1, GLdouble u2)
{
save_MapGrid1f(un, (GLfloat) u1, (GLfloat) u2);
}
static void GLAPIENTRY
save_MapGrid2f(GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MAPGRID2, 6);
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
n[4].i = vn;
n[5].f = v1;
n[6].f = v2;
}
if (ctx->ExecuteFlag) {
CALL_MapGrid2f(ctx->Exec, (un, u1, u2, vn, v1, v2));
}
}
static void GLAPIENTRY
save_MapGrid2d(GLint un, GLdouble u1, GLdouble u2,
GLint vn, GLdouble v1, GLdouble v2)
{
save_MapGrid2f(un, (GLfloat) u1, (GLfloat) u2,
vn, (GLfloat) v1, (GLfloat) v2);
}
static void GLAPIENTRY
save_MatrixMode(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MATRIX_MODE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_MatrixMode(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_Minmax(GLenum target, GLenum internalFormat, GLboolean sink)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MIN_MAX, 3);
if (n) {
n[1].e = target;
n[2].e = internalFormat;
n[3].b = sink;
}
if (ctx->ExecuteFlag) {
CALL_Minmax(ctx->Exec, (target, internalFormat, sink));
}
}
static void GLAPIENTRY
save_MultMatrixf(const GLfloat * m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_MULT_MATRIX, 16);
if (n) {
GLuint i;
for (i = 0; i < 16; i++) {
n[1 + i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
CALL_MultMatrixf(ctx->Exec, (m));
}
}
static void GLAPIENTRY
save_MultMatrixd(const GLdouble * m)
{
GLfloat f[16];
GLint i;
for (i = 0; i < 16; i++) {
f[i] = (GLfloat) m[i];
}
save_MultMatrixf(f);
}
static void GLAPIENTRY
save_NewList(GLuint list, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
/* It's an error to call this function while building a display list */
_mesa_error(ctx, GL_INVALID_OPERATION, "glNewList");
(void) list;
(void) mode;
}
static void GLAPIENTRY
save_Ortho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ORTHO, 6);
if (n) {
n[1].f = (GLfloat) left;
n[2].f = (GLfloat) right;
n[3].f = (GLfloat) bottom;
n[4].f = (GLfloat) top;
n[5].f = (GLfloat) nearval;
n[6].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_Ortho(ctx->Exec, (left, right, bottom, top, nearval, farval));
}
}
static void GLAPIENTRY
save_PixelMapfv(GLenum map, GLint mapsize, const GLfloat *values)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PIXEL_MAP, 3);
if (n) {
n[1].e = map;
n[2].i = mapsize;
n[3].data = (void *) _mesa_malloc(mapsize * sizeof(GLfloat));
MEMCPY(n[3].data, (void *) values, mapsize * sizeof(GLfloat));
}
if (ctx->ExecuteFlag) {
CALL_PixelMapfv(ctx->Exec, (map, mapsize, values));
}
}
static void GLAPIENTRY
save_PixelMapuiv(GLenum map, GLint mapsize, const GLuint *values)
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GLint i;
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
for (i = 0; i < mapsize; i++) {
fvalues[i] = UINT_TO_FLOAT(values[i]);
}
}
save_PixelMapfv(map, mapsize, fvalues);
}
static void GLAPIENTRY
save_PixelMapusv(GLenum map, GLint mapsize, const GLushort *values)
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GLint i;
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
for (i = 0; i < mapsize; i++) {
fvalues[i] = USHORT_TO_FLOAT(values[i]);
}
}
save_PixelMapfv(map, mapsize, fvalues);
}
static void GLAPIENTRY
save_PixelTransferf(GLenum pname, GLfloat param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PIXEL_TRANSFER, 2);
if (n) {
n[1].e = pname;
n[2].f = param;
}
if (ctx->ExecuteFlag) {
CALL_PixelTransferf(ctx->Exec, (pname, param));
}
}
static void GLAPIENTRY
save_PixelTransferi(GLenum pname, GLint param)
{
save_PixelTransferf(pname, (GLfloat) param);
}
static void GLAPIENTRY
save_PixelZoom(GLfloat xfactor, GLfloat yfactor)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PIXEL_ZOOM, 2);
if (n) {
n[1].f = xfactor;
n[2].f = yfactor;
}
if (ctx->ExecuteFlag) {
CALL_PixelZoom(ctx->Exec, (xfactor, yfactor));
}
}
static void GLAPIENTRY
save_PointParameterfvEXT(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_POINT_PARAMETERS, 4);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
}
if (ctx->ExecuteFlag) {
CALL_PointParameterfvEXT(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_PointParameterfEXT(GLenum pname, GLfloat param)
{
save_PointParameterfvEXT(pname, &param);
}
static void GLAPIENTRY
save_PointParameteriNV(GLenum pname, GLint param)
{
GLfloat p = (GLfloat) param;
save_PointParameterfvEXT(pname, &p);
}
static void GLAPIENTRY
save_PointParameterivNV(GLenum pname, const GLint * param)
{
GLfloat p = (GLfloat) param[0];
save_PointParameterfvEXT(pname, &p);
}
static void GLAPIENTRY
save_PointSize(GLfloat size)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_POINT_SIZE, 1);
if (n) {
n[1].f = size;
}
if (ctx->ExecuteFlag) {
CALL_PointSize(ctx->Exec, (size));
}
}
static void GLAPIENTRY
save_PolygonMode(GLenum face, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_POLYGON_MODE, 2);
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_PolygonMode(ctx->Exec, (face, mode));
}
}
static void GLAPIENTRY
save_PolygonStipple(const GLubyte * pattern)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image = unpack_image(2, 32, 32, 1, GL_COLOR_INDEX, GL_BITMAP,
pattern, &ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_POLYGON_STIPPLE, 1);
if (n) {
n[1].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_PolygonStipple(ctx->Exec, ((GLubyte *) pattern));
}
}
static void GLAPIENTRY
save_PolygonOffset(GLfloat factor, GLfloat units)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_POLYGON_OFFSET, 2);
if (n) {
n[1].f = factor;
n[2].f = units;
}
if (ctx->ExecuteFlag) {
CALL_PolygonOffset(ctx->Exec, (factor, units));
}
}
static void GLAPIENTRY
save_PolygonOffsetEXT(GLfloat factor, GLfloat bias)
{
GET_CURRENT_CONTEXT(ctx);
/* XXX mult by DepthMaxF here??? */
save_PolygonOffset(factor, ctx->DrawBuffer->_DepthMaxF * bias);
}
static void GLAPIENTRY
save_PopAttrib(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_POP_ATTRIB, 0);
if (ctx->ExecuteFlag) {
CALL_PopAttrib(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PopMatrix(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_POP_MATRIX, 0);
if (ctx->ExecuteFlag) {
CALL_PopMatrix(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PopName(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_POP_NAME, 0);
if (ctx->ExecuteFlag) {
CALL_PopName(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PrioritizeTextures(GLsizei num, const GLuint * textures,
const GLclampf * priorities)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
for (i = 0; i < num; i++) {
Node *n;
n = ALLOC_INSTRUCTION(ctx, OPCODE_PRIORITIZE_TEXTURE, 2);
if (n) {
n[1].ui = textures[i];
n[2].f = priorities[i];
}
}
if (ctx->ExecuteFlag) {
CALL_PrioritizeTextures(ctx->Exec, (num, textures, priorities));
}
}
static void GLAPIENTRY
save_PushAttrib(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PUSH_ATTRIB, 1);
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
CALL_PushAttrib(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_PushMatrix(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_PUSH_MATRIX, 0);
if (ctx->ExecuteFlag) {
CALL_PushMatrix(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PushName(GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PUSH_NAME, 1);
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_PushName(ctx->Exec, (name));
}
}
static void GLAPIENTRY
save_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_RASTER_POS, 4);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
CALL_RasterPos4f(ctx->Exec, (x, y, z, w));
}
}
static void GLAPIENTRY
save_RasterPos2d(GLdouble x, GLdouble y)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2f(GLfloat x, GLfloat y)
{
save_RasterPos4f(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2i(GLint x, GLint y)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2s(GLshort x, GLshort y)
{
save_RasterPos4f(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
{
save_RasterPos4f(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3i(GLint x, GLint y, GLint z)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3s(GLshort x, GLshort y, GLshort z)
{
save_RasterPos4f(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
{
save_RasterPos4f(x, y, z, w);
}
static void GLAPIENTRY
save_RasterPos2dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos4dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_RasterPos4fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_RasterPos4iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_RasterPos4sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_PassThrough(GLfloat token)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PASSTHROUGH, 1);
if (n) {
n[1].f = token;
}
if (ctx->ExecuteFlag) {
CALL_PassThrough(ctx->Exec, (token));
}
}
static void GLAPIENTRY
save_ReadBuffer(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_READ_BUFFER, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ReadBuffer(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_ResetHistogram(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_RESET_HISTOGRAM, 1);
if (n) {
n[1].e = target;
}
if (ctx->ExecuteFlag) {
CALL_ResetHistogram(ctx->Exec, (target));
}
}
static void GLAPIENTRY
save_ResetMinmax(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_RESET_MIN_MAX, 1);
if (n) {
n[1].e = target;
}
if (ctx->ExecuteFlag) {
CALL_ResetMinmax(ctx->Exec, (target));
}
}
static void GLAPIENTRY
save_Rotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ROTATE, 4);
if (n) {
n[1].f = angle;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Rotatef(ctx->Exec, (angle, x, y, z));
}
}
static void GLAPIENTRY
save_Rotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
save_Rotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Scalef(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_SCALE, 3);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Scalef(ctx->Exec, (x, y, z));
}
}
static void GLAPIENTRY
save_Scaled(GLdouble x, GLdouble y, GLdouble z)
{
save_Scalef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Scissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_SCISSOR, 4);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = width;
n[4].i = height;
}
if (ctx->ExecuteFlag) {
CALL_Scissor(ctx->Exec, (x, y, width, height));
}
}
static void GLAPIENTRY
save_ShadeModel(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_SHADE_MODEL, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ShadeModel(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_StencilFunc(GLenum func, GLint ref, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_FUNC, 3);
if (n) {
n[1].e = func;
n[2].i = ref;
n[3].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFunc(ctx->Exec, (func, ref, mask));
}
}
static void GLAPIENTRY
save_StencilMask(GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_MASK, 1);
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_StencilOp(GLenum fail, GLenum zfail, GLenum zpass)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_OP, 3);
if (n) {
n[1].e = fail;
n[2].e = zfail;
n[3].e = zpass;
}
if (ctx->ExecuteFlag) {
CALL_StencilOp(ctx->Exec, (fail, zfail, zpass));
}
}
static void GLAPIENTRY
save_StencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4);
if (n) {
n[1].e = face;
n[2].e = func;
n[3].i = ref;
n[4].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFuncSeparate(ctx->Exec, (face, func, ref, mask));
}
}
static void GLAPIENTRY
save_StencilFuncSeparateATI(GLenum frontfunc, GLenum backfunc, GLint ref,
GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* GL_FRONT */
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4);
if (n) {
n[1].e = GL_FRONT;
n[2].e = frontfunc;
n[3].i = ref;
n[4].ui = mask;
}
/* GL_BACK */
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4);
if (n) {
n[1].e = GL_BACK;
n[2].e = backfunc;
n[3].i = ref;
n[4].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFuncSeparate(ctx->Exec, (GL_FRONT, frontfunc, ref, mask));
CALL_StencilFuncSeparate(ctx->Exec, (GL_BACK, backfunc, ref, mask));
}
}
static void GLAPIENTRY
save_StencilMaskSeparate(GLenum face, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_MASK_SEPARATE, 2);
if (n) {
n[1].e = face;
n[2].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilMaskSeparate(ctx->Exec, (face, mask));
}
}
static void GLAPIENTRY
save_StencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_STENCIL_OP_SEPARATE, 4);
if (n) {
n[1].e = face;
n[2].e = fail;
n[3].e = zfail;
n[4].e = zpass;
}
if (ctx->ExecuteFlag) {
CALL_StencilOpSeparate(ctx->Exec, (face, fail, zfail, zpass));
}
}
static void GLAPIENTRY
save_TexEnvfv(GLenum target, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEXENV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
if (pname == GL_TEXTURE_ENV_COLOR) {
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
else {
n[3].f = params[0];
n[4].f = n[5].f = n[6].f = 0.0F;
}
}
if (ctx->ExecuteFlag) {
CALL_TexEnvfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_TexEnvf(GLenum target, GLenum pname, GLfloat param)
{
save_TexEnvfv(target, pname, &param);
}
static void GLAPIENTRY
save_TexEnvi(GLenum target, GLenum pname, GLint param)
{
GLfloat p[4];
p[0] = (GLfloat) param;
p[1] = p[2] = p[3] = 0.0;
save_TexEnvfv(target, pname, p);
}
static void GLAPIENTRY
save_TexEnviv(GLenum target, GLenum pname, const GLint * param)
{
GLfloat p[4];
if (pname == GL_TEXTURE_ENV_COLOR) {
p[0] = INT_TO_FLOAT(param[0]);
p[1] = INT_TO_FLOAT(param[1]);
p[2] = INT_TO_FLOAT(param[2]);
p[3] = INT_TO_FLOAT(param[3]);
}
else {
p[0] = (GLfloat) param[0];
p[1] = p[2] = p[3] = 0.0F;
}
save_TexEnvfv(target, pname, p);
}
static void GLAPIENTRY
save_TexGenfv(GLenum coord, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEXGEN, 6);
if (n) {
n[1].e = coord;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexGenfv(ctx->Exec, (coord, pname, params));
}
}
static void GLAPIENTRY
save_TexGeniv(GLenum coord, GLenum pname, const GLint *params)
{
GLfloat p[4];
p[0] = (GLfloat) params[0];
p[1] = (GLfloat) params[1];
p[2] = (GLfloat) params[2];
p[3] = (GLfloat) params[3];
save_TexGenfv(coord, pname, p);
}
static void GLAPIENTRY
save_TexGend(GLenum coord, GLenum pname, GLdouble param)
{
GLfloat p = (GLfloat) param;
save_TexGenfv(coord, pname, &p);
}
static void GLAPIENTRY
save_TexGendv(GLenum coord, GLenum pname, const GLdouble *params)
{
GLfloat p[4];
p[0] = (GLfloat) params[0];
p[1] = (GLfloat) params[1];
p[2] = (GLfloat) params[2];
p[3] = (GLfloat) params[3];
save_TexGenfv(coord, pname, p);
}
static void GLAPIENTRY
save_TexGenf(GLenum coord, GLenum pname, GLfloat param)
{
save_TexGenfv(coord, pname, &param);
}
static void GLAPIENTRY
save_TexGeni(GLenum coord, GLenum pname, GLint param)
{
save_TexGeniv(coord, pname, &param);
}
static void GLAPIENTRY
save_TexParameterfv(GLenum target, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEXPARAMETER, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_TexParameterf(GLenum target, GLenum pname, GLfloat param)
{
save_TexParameterfv(target, pname, &param);
}
static void GLAPIENTRY
save_TexParameteri(GLenum target, GLenum pname, GLint param)
{
GLfloat fparam[4];
fparam[0] = (GLfloat) param;
fparam[1] = fparam[2] = fparam[3] = 0.0;
save_TexParameterfv(target, pname, fparam);
}
static void GLAPIENTRY
save_TexParameteriv(GLenum target, GLenum pname, const GLint *params)
{
GLfloat fparam[4];
fparam[0] = (GLfloat) params[0];
fparam[1] = fparam[2] = fparam[3] = 0.0;
save_TexParameterfv(target, pname, fparam);
}
static void GLAPIENTRY
save_TexImage1D(GLenum target,
GLint level, GLint components,
GLsizei width, GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_1D) {
/* don't compile, execute immediately */
CALL_TexImage1D(ctx->Exec, (target, level, components, width,
border, format, type, pixels));
}
else {
GLvoid *image = unpack_image(1, width, 1, 1, format, type,
pixels, &ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEX_IMAGE1D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = border;
n[6].e = format;
n[7].e = type;
n[8].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_TexImage1D(ctx->Exec, (target, level, components, width,
border, format, type, pixels));
}
}
}
static void GLAPIENTRY
save_TexImage2D(GLenum target,
GLint level, GLint components,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_2D) {
/* don't compile, execute immediately */
CALL_TexImage2D(ctx->Exec, (target, level, components, width,
height, border, format, type, pixels));
}
else {
GLvoid *image = unpack_image(2, width, height, 1, format, type,
pixels, &ctx->Unpack);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEX_IMAGE2D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = border;
n[7].e = format;
n[8].e = type;
n[9].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_TexImage2D(ctx->Exec, (target, level, components, width,
height, border, format, type, pixels));
}
}
}
static void GLAPIENTRY
save_TexImage3D(GLenum target,
GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLsizei depth,
GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_3D) {
/* don't compile, execute immediately */
CALL_TexImage3D(ctx->Exec, (target, level, internalFormat, width,
height, depth, border, format, type,
pixels));
}
else {
Node *n;
GLvoid *image = unpack_image(3, width, height, depth, format, type,
pixels, &ctx->Unpack);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEX_IMAGE3D, 10);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = (GLint) internalFormat;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = (GLint) depth;
n[7].i = border;
n[8].e = format;
n[9].e = type;
n[10].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_TexImage3D(ctx->Exec, (target, level, internalFormat, width,
height, depth, border, format, type,
pixels));
}
}
}
static void GLAPIENTRY
save_TexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format, GLenum type,
const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLvoid *image = unpack_image(1, width, 1, 1, format, type,
pixels, &ctx->Unpack);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEX_SUB_IMAGE1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = (GLint) width;
n[5].e = format;
n[6].e = type;
n[7].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage1D(ctx->Exec, (target, level, xoffset, width,
format, type, pixels));
}
}
static void GLAPIENTRY
save_TexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLvoid *image = unpack_image(2, width, height, 1, format, type,
pixels, &ctx->Unpack);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEX_SUB_IMAGE2D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = (GLint) width;
n[6].i = (GLint) height;
n[7].e = format;
n[8].e = type;
n[9].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset,
width, height, format, type, pixels));
}
}
static void GLAPIENTRY
save_TexSubImage3D(GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLvoid *image = unpack_image(3, width, height, depth, format, type,
pixels, &ctx->Unpack);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TEX_SUB_IMAGE3D, 11);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = zoffset;
n[6].i = (GLint) width;
n[7].i = (GLint) height;
n[8].i = (GLint) depth;
n[9].e = format;
n[10].e = type;
n[11].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage3D(ctx->Exec, (target, level,
xoffset, yoffset, zoffset,
width, height, depth, format, type,
pixels));
}
}
static void GLAPIENTRY
save_Translatef(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TRANSLATE, 3);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Translatef(ctx->Exec, (x, y, z));
}
}
static void GLAPIENTRY
save_Translated(GLdouble x, GLdouble y, GLdouble z)
{
save_Translatef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_VIEWPORT, 4);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
}
if (ctx->ExecuteFlag) {
CALL_Viewport(ctx->Exec, (x, y, width, height));
}
}
static void GLAPIENTRY
save_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_WINDOW_POS, 4);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
CALL_WindowPos4fMESA(ctx->Exec, (x, y, z, w));
}
}
static void GLAPIENTRY
save_WindowPos2dMESA(GLdouble x, GLdouble y)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2fMESA(GLfloat x, GLfloat y)
{
save_WindowPos4fMESA(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2iMESA(GLint x, GLint y)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2sMESA(GLshort x, GLshort y)
{
save_WindowPos4fMESA(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z)
{
save_WindowPos4fMESA(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3iMESA(GLint x, GLint y, GLint z)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3sMESA(GLshort x, GLshort y, GLshort z)
{
save_WindowPos4fMESA(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
{
save_WindowPos4fMESA(x, y, z, w);
}
static void GLAPIENTRY
save_WindowPos2dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos4dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_WindowPos4fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_WindowPos4ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_WindowPos4svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
}
/* GL_ARB_multitexture */
static void GLAPIENTRY
save_ActiveTextureARB(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ACTIVE_TEXTURE, 1);
if (n) {
n[1].e = target;
}
if (ctx->ExecuteFlag) {
CALL_ActiveTextureARB(ctx->Exec, (target));
}
}
/* GL_ARB_transpose_matrix */
static void GLAPIENTRY
save_LoadTransposeMatrixdARB(const GLdouble m[16])
{
GLfloat tm[16];
_math_transposefd(tm, m);
save_LoadMatrixf(tm);
}
static void GLAPIENTRY
save_LoadTransposeMatrixfARB(const GLfloat m[16])
{
GLfloat tm[16];
_math_transposef(tm, m);
save_LoadMatrixf(tm);
}
static void GLAPIENTRY
save_MultTransposeMatrixdARB(const GLdouble m[16])
{
GLfloat tm[16];
_math_transposefd(tm, m);
save_MultMatrixf(tm);
}
static void GLAPIENTRY
save_MultTransposeMatrixfARB(const GLfloat m[16])
{
GLfloat tm[16];
_math_transposef(tm, m);
save_MultMatrixf(tm);
}
/* GL_ARB_texture_compression */
static void GLAPIENTRY
save_CompressedTexImage1DARB(GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLint border, GLsizei imageSize,
const GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_1D) {
/* don't compile, execute immediately */
CALL_CompressedTexImage1DARB(ctx->Exec, (target, level, internalFormat,
width, border, imageSize,
data));
}
else {
Node *n;
GLvoid *image;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* make copy of image */
image = _mesa_malloc(imageSize);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage1DARB");
return;
}
MEMCPY(image, data, imageSize);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COMPRESSED_TEX_IMAGE_1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalFormat;
n[4].i = (GLint) width;
n[5].i = border;
n[6].i = imageSize;
n[7].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexImage1DARB(ctx->Exec,
(target, level, internalFormat, width,
border, imageSize, data));
}
}
}
static void GLAPIENTRY
save_CompressedTexImage2DARB(GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLsizei height, GLint border, GLsizei imageSize,
const GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_2D) {
/* don't compile, execute immediately */
CALL_CompressedTexImage2DARB(ctx->Exec, (target, level, internalFormat,
width, height, border,
imageSize, data));
}
else {
Node *n;
GLvoid *image;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* make copy of image */
image = _mesa_malloc(imageSize);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage2DARB");
return;
}
MEMCPY(image, data, imageSize);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COMPRESSED_TEX_IMAGE_2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalFormat;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = border;
n[7].i = imageSize;
n[8].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexImage2DARB(ctx->Exec,
(target, level, internalFormat, width,
height, border, imageSize, data));
}
}
}
static void GLAPIENTRY
save_CompressedTexImage3DARB(GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLsizei height, GLsizei depth, GLint border,
GLsizei imageSize, const GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_3D) {
/* don't compile, execute immediately */
CALL_CompressedTexImage3DARB(ctx->Exec, (target, level, internalFormat,
width, height, depth, border,
imageSize, data));
}
else {
Node *n;
GLvoid *image;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* make copy of image */
image = _mesa_malloc(imageSize);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage3DARB");
return;
}
MEMCPY(image, data, imageSize);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COMPRESSED_TEX_IMAGE_3D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalFormat;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = (GLint) depth;
n[7].i = border;
n[8].i = imageSize;
n[9].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexImage3DARB(ctx->Exec,
(target, level, internalFormat, width,
height, depth, border, imageSize,
data));
}
}
}
static void GLAPIENTRY
save_CompressedTexSubImage1DARB(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLsizei imageSize, const GLvoid * data)
{
Node *n;
GLvoid *image;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* make copy of image */
image = _mesa_malloc(imageSize);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexSubImage1DARB");
return;
}
MEMCPY(image, data, imageSize);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = (GLint) width;
n[5].e = format;
n[6].i = imageSize;
n[7].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexSubImage1DARB(ctx->Exec, (target, level, xoffset,
width, format, imageSize,
data));
}
}
static void GLAPIENTRY
save_CompressedTexSubImage2DARB(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLsizei imageSize,
const GLvoid * data)
{
Node *n;
GLvoid *image;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* make copy of image */
image = _mesa_malloc(imageSize);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexSubImage2DARB");
return;
}
MEMCPY(image, data, imageSize);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = (GLint) width;
n[6].i = (GLint) height;
n[7].e = format;
n[8].i = imageSize;
n[9].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexSubImage2DARB(ctx->Exec,
(target, level, xoffset, yoffset, width,
height, format, imageSize, data));
}
}
static void GLAPIENTRY
save_CompressedTexSubImage3DARB(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth, GLenum format,
GLsizei imageSize, const GLvoid * data)
{
Node *n;
GLvoid *image;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* make copy of image */
image = _mesa_malloc(imageSize);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexSubImage3DARB");
return;
}
MEMCPY(image, data, imageSize);
n = ALLOC_INSTRUCTION(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D, 11);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = zoffset;
n[6].i = (GLint) width;
n[7].i = (GLint) height;
n[8].i = (GLint) depth;
n[9].e = format;
n[10].i = imageSize;
n[11].data = image;
}
else if (image) {
_mesa_free(image);
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexSubImage3DARB(ctx->Exec,
(target, level, xoffset, yoffset,
zoffset, width, height, depth, format,
imageSize, data));
}
}
/* GL_ARB_multisample */
static void GLAPIENTRY
save_SampleCoverageARB(GLclampf value, GLboolean invert)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_SAMPLE_COVERAGE, 2);
if (n) {
n[1].f = value;
n[2].b = invert;
}
if (ctx->ExecuteFlag) {
CALL_SampleCoverageARB(ctx->Exec, (value, invert));
}
}
/*
* GL_NV_vertex_program
*/
#if FEATURE_NV_vertex_program || FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
static void GLAPIENTRY
save_BindProgramNV(GLenum target, GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BIND_PROGRAM_NV, 2);
if (n) {
n[1].e = target;
n[2].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BindProgramNV(ctx->Exec, (target, id));
}
}
static void GLAPIENTRY
save_ProgramEnvParameter4fARB(GLenum target, GLuint index,
GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_ENV_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = x;
n[4].f = y;
n[5].f = z;
n[6].f = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramEnvParameter4fARB(ctx->Exec, (target, index, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramEnvParameter4fvARB(GLenum target, GLuint index,
const GLfloat *params)
{
save_ProgramEnvParameter4fARB(target, index, params[0], params[1],
params[2], params[3]);
}
static void GLAPIENTRY
save_ProgramEnvParameters4fvEXT(GLenum target, GLuint index, GLsizei count,
const GLfloat * params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
if (count > 0) {
GLint i;
const GLfloat * p = params;
for (i = 0 ; i < count ; i++) {
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_ENV_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = p[0];
n[4].f = p[1];
n[5].f = p[2];
n[6].f = p[3];
p += 4;
}
}
}
if (ctx->ExecuteFlag) {
CALL_ProgramEnvParameters4fvEXT(ctx->Exec, (target, index, count, params));
}
}
static void GLAPIENTRY
save_ProgramEnvParameter4dARB(GLenum target, GLuint index,
GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_ProgramEnvParameter4fARB(target, index,
(GLfloat) x,
(GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_ProgramEnvParameter4dvARB(GLenum target, GLuint index,
const GLdouble *params)
{
save_ProgramEnvParameter4fARB(target, index,
(GLfloat) params[0],
(GLfloat) params[1],
(GLfloat) params[2], (GLfloat) params[3]);
}
#endif /* FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program || FEATURE_NV_vertex_program */
#if FEATURE_NV_vertex_program
static void GLAPIENTRY
save_ExecuteProgramNV(GLenum target, GLuint id, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EXECUTE_PROGRAM_NV, 6);
if (n) {
n[1].e = target;
n[2].ui = id;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_ExecuteProgramNV(ctx->Exec, (target, id, params));
}
}
static void GLAPIENTRY
save_ProgramParameters4dvNV(GLenum target, GLuint index,
GLuint num, const GLdouble *params)
{
GLuint i;
for (i = 0; i < num; i++) {
save_ProgramEnvParameter4dvARB(target, index + i, params + 4 * i);
}
}
static void GLAPIENTRY
save_ProgramParameters4fvNV(GLenum target, GLuint index,
GLuint num, const GLfloat *params)
{
GLuint i;
for (i = 0; i < num; i++) {
save_ProgramEnvParameter4fvARB(target, index + i, params + 4 * i);
}
}
static void GLAPIENTRY
save_LoadProgramNV(GLenum target, GLuint id, GLsizei len,
const GLubyte * program)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLubyte *programCopy;
programCopy = (GLubyte *) _mesa_malloc(len);
if (!programCopy) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glLoadProgramNV");
return;
}
_mesa_memcpy(programCopy, program, len);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_LOAD_PROGRAM_NV, 4);
if (n) {
n[1].e = target;
n[2].ui = id;
n[3].i = len;
n[4].data = programCopy;
}
if (ctx->ExecuteFlag) {
CALL_LoadProgramNV(ctx->Exec, (target, id, len, program));
}
}
static void GLAPIENTRY
save_RequestResidentProgramsNV(GLsizei num, const GLuint * ids)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLuint *idCopy = (GLuint *) _mesa_malloc(num * sizeof(GLuint));
if (!idCopy) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glRequestResidentProgramsNV");
return;
}
_mesa_memcpy(idCopy, ids, num * sizeof(GLuint));
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TRACK_MATRIX_NV, 2);
if (n) {
n[1].i = num;
n[2].data = idCopy;
}
if (ctx->ExecuteFlag) {
CALL_RequestResidentProgramsNV(ctx->Exec, (num, ids));
}
}
static void GLAPIENTRY
save_TrackMatrixNV(GLenum target, GLuint address,
GLenum matrix, GLenum transform)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_TRACK_MATRIX_NV, 4);
if (n) {
n[1].e = target;
n[2].ui = address;
n[3].e = matrix;
n[4].e = transform;
}
if (ctx->ExecuteFlag) {
CALL_TrackMatrixNV(ctx->Exec, (target, address, matrix, transform));
}
}
#endif /* FEATURE_NV_vertex_program */
/*
* GL_NV_fragment_program
*/
#if FEATURE_NV_fragment_program
static void GLAPIENTRY
save_ProgramLocalParameter4fARB(GLenum target, GLuint index,
GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = x;
n[4].f = y;
n[5].f = z;
n[6].f = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4fARB(ctx->Exec, (target, index, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramLocalParameter4fvARB(GLenum target, GLuint index,
const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4fvARB(ctx->Exec, (target, index, params));
}
}
static void GLAPIENTRY
save_ProgramLocalParameters4fvEXT(GLenum target, GLuint index, GLsizei count,
const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
if (count > 0) {
GLint i;
const GLfloat * p = params;
for (i = 0 ; i < count ; i++) {
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = p[0];
n[4].f = p[1];
n[5].f = p[2];
n[6].f = p[3];
p += 4;
}
}
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameters4fvEXT(ctx->Exec, (target, index, count, params));
}
}
static void GLAPIENTRY
save_ProgramLocalParameter4dARB(GLenum target, GLuint index,
GLdouble x, GLdouble y,
GLdouble z, GLdouble w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = (GLfloat) x;
n[4].f = (GLfloat) y;
n[5].f = (GLfloat) z;
n[6].f = (GLfloat) w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4dARB(ctx->Exec, (target, index, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramLocalParameter4dvARB(GLenum target, GLuint index,
const GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = (GLfloat) params[0];
n[4].f = (GLfloat) params[1];
n[5].f = (GLfloat) params[2];
n[6].f = (GLfloat) params[3];
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4dvARB(ctx->Exec, (target, index, params));
}
}
static void GLAPIENTRY
save_ProgramNamedParameter4fNV(GLuint id, GLsizei len, const GLubyte * name,
GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLubyte *nameCopy = (GLubyte *) _mesa_malloc(len);
if (!nameCopy) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramNamedParameter4fNV");
return;
}
_mesa_memcpy(nameCopy, name, len);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_NAMED_PARAMETER_NV, 6);
if (n) {
n[1].ui = id;
n[2].i = len;
n[3].data = nameCopy;
n[4].f = x;
n[5].f = y;
n[6].f = z;
n[7].f = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramNamedParameter4fNV(ctx->Exec, (id, len, name, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramNamedParameter4fvNV(GLuint id, GLsizei len, const GLubyte * name,
const float v[])
{
save_ProgramNamedParameter4fNV(id, len, name, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_ProgramNamedParameter4dNV(GLuint id, GLsizei len, const GLubyte * name,
GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_ProgramNamedParameter4fNV(id, len, name, (GLfloat) x, (GLfloat) y,
(GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_ProgramNamedParameter4dvNV(GLuint id, GLsizei len, const GLubyte * name,
const double v[])
{
save_ProgramNamedParameter4fNV(id, len, name, (GLfloat) v[0],
(GLfloat) v[1], (GLfloat) v[2],
(GLfloat) v[3]);
}
#endif /* FEATURE_NV_fragment_program */
/* GL_EXT_stencil_two_side */
static void GLAPIENTRY
save_ActiveStencilFaceEXT(GLenum face)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ACTIVE_STENCIL_FACE_EXT, 1);
if (n) {
n[1].e = face;
}
if (ctx->ExecuteFlag) {
CALL_ActiveStencilFaceEXT(ctx->Exec, (face));
}
}
/* GL_EXT_depth_bounds_test */
static void GLAPIENTRY
save_DepthBoundsEXT(GLclampd zmin, GLclampd zmax)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DEPTH_BOUNDS_EXT, 2);
if (n) {
n[1].f = (GLfloat) zmin;
n[2].f = (GLfloat) zmax;
}
if (ctx->ExecuteFlag) {
CALL_DepthBoundsEXT(ctx->Exec, (zmin, zmax));
}
}
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
static void GLAPIENTRY
save_ProgramStringARB(GLenum target, GLenum format, GLsizei len,
const GLvoid * string)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLubyte *programCopy;
programCopy = (GLubyte *) _mesa_malloc(len);
if (!programCopy) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
return;
}
_mesa_memcpy(programCopy, string, len);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_PROGRAM_STRING_ARB, 4);
if (n) {
n[1].e = target;
n[2].e = format;
n[3].i = len;
n[4].data = programCopy;
}
if (ctx->ExecuteFlag) {
CALL_ProgramStringARB(ctx->Exec, (target, format, len, string));
}
}
#endif /* FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program */
#if FEATURE_ARB_occlusion_query
static void GLAPIENTRY
save_BeginQueryARB(GLenum target, GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BEGIN_QUERY_ARB, 2);
if (n) {
n[1].e = target;
n[2].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BeginQueryARB(ctx->Exec, (target, id));
}
}
static void GLAPIENTRY
save_EndQueryARB(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_END_QUERY_ARB, 1);
if (n) {
n[1].e = target;
}
if (ctx->ExecuteFlag) {
CALL_EndQueryARB(ctx->Exec, (target));
}
}
#endif /* FEATURE_ARB_occlusion_query */
static void GLAPIENTRY
save_DrawBuffersARB(GLsizei count, const GLenum * buffers)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_DRAW_BUFFERS_ARB, 1 + MAX_DRAW_BUFFERS);
if (n) {
GLint i;
n[1].i = count;
if (count > MAX_DRAW_BUFFERS)
count = MAX_DRAW_BUFFERS;
for (i = 0; i < count; i++) {
n[2 + i].e = buffers[i];
}
}
if (ctx->ExecuteFlag) {
CALL_DrawBuffersARB(ctx->Exec, (count, buffers));
}
}
#if FEATURE_ATI_fragment_shader
static void GLAPIENTRY
save_BindFragmentShaderATI(GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
n = ALLOC_INSTRUCTION(ctx, OPCODE_BIND_FRAGMENT_SHADER_ATI, 1);
if (n) {
n[1].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BindFragmentShaderATI(ctx->Exec, (id));
}
}
static void GLAPIENTRY
save_SetFragmentShaderConstantATI(GLuint dst, const GLfloat *value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
n = ALLOC_INSTRUCTION(ctx, OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI, 5);
if (n) {
n[1].ui = dst;
n[2].f = value[0];
n[3].f = value[1];
n[4].f = value[2];
n[5].f = value[3];
}
if (ctx->ExecuteFlag) {
CALL_SetFragmentShaderConstantATI(ctx->Exec, (dst, value));
}
}
#endif
static void
save_Attr1fNV(GLenum attr, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_1F_NV, 2);
if (n) {
n[1].e = attr;
n[2].f = x;
}
ASSERT(attr < MAX_VERTEX_PROGRAM_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 1;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib1fNV(ctx->Exec, (attr, x));
}
}
static void
save_Attr2fNV(GLenum attr, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_2F_NV, 3);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
}
ASSERT(attr < MAX_VERTEX_PROGRAM_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 2;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib2fNV(ctx->Exec, (attr, x, y));
}
}
static void
save_Attr3fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_3F_NV, 4);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
ASSERT(attr < MAX_VERTEX_PROGRAM_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 3;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib3fNV(ctx->Exec, (attr, x, y, z));
}
}
static void
save_Attr4fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_4F_NV, 5);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
n[5].f = w;
}
ASSERT(attr < MAX_VERTEX_PROGRAM_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 4;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib4fNV(ctx->Exec, (attr, x, y, z, w));
}
}
static void
save_Attr1fARB(GLenum attr, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_1F_ARB, 2);
if (n) {
n[1].e = attr;
n[2].f = x;
}
ASSERT(attr < MAX_VERTEX_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 1;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib1fARB(ctx->Exec, (attr, x));
}
}
static void
save_Attr2fARB(GLenum attr, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_2F_ARB, 3);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
}
ASSERT(attr < MAX_VERTEX_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 2;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib2fARB(ctx->Exec, (attr, x, y));
}
}
static void
save_Attr3fARB(GLenum attr, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_3F_ARB, 4);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
ASSERT(attr < MAX_VERTEX_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 3;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib3fARB(ctx->Exec, (attr, x, y, z));
}
}
static void
save_Attr4fARB(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_ATTR_4F_ARB, 5);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
n[5].f = w;
}
ASSERT(attr < MAX_VERTEX_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 4;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib4fARB(ctx->Exec, (attr, x, y, z, w));
}
}
static void GLAPIENTRY
save_EvalCoord1f(GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EVAL_C1, 1);
if (n) {
n[1].f = x;
}
if (ctx->ExecuteFlag) {
CALL_EvalCoord1f(ctx->Exec, (x));
}
}
static void GLAPIENTRY
save_EvalCoord1fv(const GLfloat * v)
{
save_EvalCoord1f(v[0]);
}
static void GLAPIENTRY
save_EvalCoord2f(GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EVAL_C2, 2);
if (n) {
n[1].f = x;
n[2].f = y;
}
if (ctx->ExecuteFlag) {
CALL_EvalCoord2f(ctx->Exec, (x, y));
}
}
static void GLAPIENTRY
save_EvalCoord2fv(const GLfloat * v)
{
save_EvalCoord2f(v[0], v[1]);
}
static void GLAPIENTRY
save_EvalPoint1(GLint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EVAL_P1, 1);
if (n) {
n[1].i = x;
}
if (ctx->ExecuteFlag) {
CALL_EvalPoint1(ctx->Exec, (x));
}
}
static void GLAPIENTRY
save_EvalPoint2(GLint x, GLint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_EVAL_P2, 2);
if (n) {
n[1].i = x;
n[2].i = y;
}
if (ctx->ExecuteFlag) {
CALL_EvalPoint2(ctx->Exec, (x, y));
}
}
static void GLAPIENTRY
save_Indexf(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, x);
}
static void GLAPIENTRY
save_Indexfv(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, v[0]);
}
static void GLAPIENTRY
save_EdgeFlag(GLboolean x)
{
save_Attr1fNV(VERT_ATTRIB_EDGEFLAG, x ? 1.0 : 0.0);
}
static void GLAPIENTRY
save_Materialfv(GLenum face, GLenum pname, const GLfloat * param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
int args, i;
SAVE_FLUSH_VERTICES(ctx);
switch (face) {
case GL_BACK:
case GL_FRONT:
case GL_FRONT_AND_BACK:
break;
default:
_mesa_compile_error(ctx, GL_INVALID_ENUM, "material(face)");
return;
}
switch (pname) {
case GL_EMISSION:
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
case GL_AMBIENT_AND_DIFFUSE:
args = 4;
break;
case GL_SHININESS:
args = 1;
break;
case GL_COLOR_INDEXES:
args = 3;
break;
default:
_mesa_compile_error(ctx, GL_INVALID_ENUM, "material(pname)");
return;
}
n = ALLOC_INSTRUCTION(ctx, OPCODE_MATERIAL, 6);
if (n) {
n[1].e = face;
n[2].e = pname;
for (i = 0; i < args; i++)
n[3 + i].f = param[i];
}
{
GLuint bitmask = _mesa_material_bitmask(ctx, face, pname, ~0, NULL);
for (i = 0; i < MAT_ATTRIB_MAX; i++)
if (bitmask & (1 << i)) {
ctx->ListState.ActiveMaterialSize[i] = args;
COPY_SZ_4V(ctx->ListState.CurrentMaterial[i], args, param);
}
}
if (ctx->ExecuteFlag) {
CALL_Materialfv(ctx->Exec, (face, pname, param));
}
}
static void GLAPIENTRY
save_Begin(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLboolean error = GL_FALSE;
if ( /*mode < GL_POINTS || */ mode > GL_POLYGON) {
_mesa_compile_error(ctx, GL_INVALID_ENUM, "Begin (mode)");
error = GL_TRUE;
}
else if (ctx->Driver.CurrentSavePrimitive == PRIM_UNKNOWN) {
/* Typically the first begin. This may raise an error on
* playback, depending on whether CallList is issued from inside
* a begin/end or not.
*/
ctx->Driver.CurrentSavePrimitive = PRIM_INSIDE_UNKNOWN_PRIM;
}
else if (ctx->Driver.CurrentSavePrimitive == PRIM_OUTSIDE_BEGIN_END) {
ctx->Driver.CurrentSavePrimitive = mode;
}
else {
_mesa_compile_error(ctx, GL_INVALID_OPERATION, "recursive begin");
error = GL_TRUE;
}
if (!error) {
/* Give the driver an opportunity to hook in an optimized
* display list compiler.
*/
if (ctx->Driver.NotifySaveBegin(ctx, mode))
return;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BEGIN, 1);
if (n) {
n[1].e = mode;
}
}
if (ctx->ExecuteFlag) {
CALL_Begin(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_End(void)
{
GET_CURRENT_CONTEXT(ctx);
SAVE_FLUSH_VERTICES(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_END, 0);
ctx->Driver.CurrentSavePrimitive = PRIM_OUTSIDE_BEGIN_END;
if (ctx->ExecuteFlag) {
CALL_End(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_Rectf(GLfloat a, GLfloat b, GLfloat c, GLfloat d)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_RECTF, 4);
if (n) {
n[1].f = a;
n[2].f = b;
n[3].f = c;
n[4].f = d;
}
if (ctx->ExecuteFlag) {
CALL_Rectf(ctx->Exec, (a, b, c, d));
}
}
static void GLAPIENTRY
save_Vertex2f(GLfloat x, GLfloat y)
{
save_Attr2fNV(VERT_ATTRIB_POS, x, y);
}
static void GLAPIENTRY
save_Vertex2fv(const GLfloat * v)
{
save_Attr2fNV(VERT_ATTRIB_POS, v[0], v[1]);
}
static void GLAPIENTRY
save_Vertex3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_POS, x, y, z);
}
static void GLAPIENTRY
save_Vertex3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_POS, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_Vertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_POS, x, y, z, w);
}
static void GLAPIENTRY
save_Vertex4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_POS, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_TexCoord1f(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_TEX0, x);
}
static void GLAPIENTRY
save_TexCoord1fv(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_TEX0, v[0]);
}
static void GLAPIENTRY
save_TexCoord2f(GLfloat x, GLfloat y)
{
save_Attr2fNV(VERT_ATTRIB_TEX0, x, y);
}
static void GLAPIENTRY
save_TexCoord2fv(const GLfloat * v)
{
save_Attr2fNV(VERT_ATTRIB_TEX0, v[0], v[1]);
}
static void GLAPIENTRY
save_TexCoord3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_TEX0, x, y, z);
}
static void GLAPIENTRY
save_TexCoord3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_TEX0, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_TexCoord4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_TEX0, x, y, z, w);
}
static void GLAPIENTRY
save_TexCoord4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_TEX0, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_Normal3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_NORMAL, x, y, z);
}
static void GLAPIENTRY
save_Normal3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_NORMAL, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_FogCoordfEXT(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_FOG, x);
}
static void GLAPIENTRY
save_FogCoordfvEXT(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_FOG, v[0]);
}
static void GLAPIENTRY
save_Color3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_COLOR0, x, y, z);
}
static void GLAPIENTRY
save_Color3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_COLOR0, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_Color4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_COLOR0, x, y, z, w);
}
static void GLAPIENTRY
save_Color4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_COLOR0, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_SecondaryColor3fEXT(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_COLOR1, x, y, z);
}
static void GLAPIENTRY
save_SecondaryColor3fvEXT(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_COLOR1, v[0], v[1], v[2]);
}
/* Just call the respective ATTR for texcoord
*/
static void GLAPIENTRY
save_MultiTexCoord1f(GLenum target, GLfloat x)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr1fNV(attr, x);
}
static void GLAPIENTRY
save_MultiTexCoord1fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr1fNV(attr, v[0]);
}
static void GLAPIENTRY
save_MultiTexCoord2f(GLenum target, GLfloat x, GLfloat y)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr2fNV(attr, x, y);
}
static void GLAPIENTRY
save_MultiTexCoord2fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr2fNV(attr, v[0], v[1]);
}
static void GLAPIENTRY
save_MultiTexCoord3f(GLenum target, GLfloat x, GLfloat y, GLfloat z)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr3fNV(attr, x, y, z);
}
static void GLAPIENTRY
save_MultiTexCoord3fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr3fNV(attr, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_MultiTexCoord4f(GLenum target, GLfloat x, GLfloat y,
GLfloat z, GLfloat w)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr4fNV(attr, x, y, z, w);
}
static void GLAPIENTRY
save_MultiTexCoord4fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr4fNV(attr, v[0], v[1], v[2], v[3]);
}
/**
* Record a GL_INVALID_VALUE error when a invalid vertex attribute
* index is found.
*/
static void
index_error(void)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_VALUE, "VertexAttribf(index)");
}
/* First level for NV_vertex_program:
*
* Check for errors at compile time?.
*/
static void GLAPIENTRY
save_VertexAttrib1fNV(GLuint index, GLfloat x)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr1fNV(index, x);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib1fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr1fNV(index, v[0]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fNV(GLuint index, GLfloat x, GLfloat y)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr2fNV(index, x, y);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr2fNV(index, v[0], v[1]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fNV(GLuint index, GLfloat x, GLfloat y, GLfloat z)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr3fNV(index, x, y, z);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr3fNV(index, v[0], v[1], v[2]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fNV(GLuint index, GLfloat x, GLfloat y,
GLfloat z, GLfloat w)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr4fNV(index, x, y, z, w);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_PROGRAM_ATTRIBS)
save_Attr4fNV(index, v[0], v[1], v[2], v[3]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib1fARB(GLuint index, GLfloat x)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr1fARB(index, x);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib1fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr1fARB(index, v[0]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fARB(GLuint index, GLfloat x, GLfloat y)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr2fARB(index, x, y);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr2fARB(index, v[0], v[1]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr3fARB(index, x, y, z);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr3fARB(index, v[0], v[1], v[2]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z,
GLfloat w)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr4fARB(index, x, y, z, w);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_ATTRIBS)
save_Attr4fARB(index, v[0], v[1], v[2], v[3]);
else
index_error();
}
/* GL_ARB_shader_objects, GL_ARB_vertex/fragment_shader */
static void GLAPIENTRY
exec_BindAttribLocationARB(GLuint program, GLuint index, const GLchar *name)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_BindAttribLocationARB(ctx->Exec, (program, index, name));
}
static GLint GLAPIENTRY
exec_GetAttribLocationARB(GLuint program, const GLchar *name)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_GetAttribLocationARB(ctx->Exec, (program, name));
}
/* XXX more shader functions needed here */
#if FEATURE_EXT_framebuffer_blit
static void GLAPIENTRY
save_BlitFramebufferEXT(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = ALLOC_INSTRUCTION(ctx, OPCODE_BLIT_FRAMEBUFFER, 10);
if (n) {
n[1].i = srcX0;
n[2].i = srcY0;
n[3].i = srcX1;
n[4].i = srcY1;
n[5].i = dstX0;
n[6].i = dstY0;
n[7].i = dstX1;
n[8].i = dstY1;
n[9].i = mask;
n[10].e = filter;
}
if (ctx->ExecuteFlag) {
CALL_BlitFramebufferEXT(ctx->Exec, (srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
mask, filter));
}
}
#endif
/**
* Save an error-generating command into display list.
*
* KW: Will appear in the list before the vertex buffer containing the
* command that provoked the error. I don't see this as a problem.
*/
static void
save_error(GLcontext *ctx, GLenum error, const char *s)
{
Node *n;
n = ALLOC_INSTRUCTION(ctx, OPCODE_ERROR, 2);
if (n) {
n[1].e = error;
n[2].data = (void *) s;
}
}
/**
* Compile an error into current display list.
*/
void
_mesa_compile_error(GLcontext *ctx, GLenum error, const char *s)
{
if (ctx->CompileFlag)
save_error(ctx, error, s);
if (ctx->ExecuteFlag)
_mesa_error(ctx, error, s);
}
/**
* Test if ID names a display list.
*/
static GLboolean
islist(GLcontext *ctx, GLuint list)
{
if (list > 0 && lookup_list(ctx, list)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/**********************************************************************/
/* Display list execution */
/**********************************************************************/
/*
* Execute a display list. Note that the ListBase offset must have already
* been added before calling this function. I.e. the list argument is
* the absolute list number, not relative to ListBase.
* \param list - display list number
*/
static void
execute_list(GLcontext *ctx, GLuint list)
{
struct mesa_display_list *dlist;
Node *n;
GLboolean done;
if (list == 0 || !islist(ctx, list))
return;
if (ctx->ListState.CallDepth == MAX_LIST_NESTING) {
/* raise an error? */
return;
}
dlist = lookup_list(ctx, list);
if (!dlist)
return;
ctx->ListState.CallDepth++;
if (ctx->Driver.BeginCallList)
ctx->Driver.BeginCallList(ctx, dlist);
n = dlist->node;
done = GL_FALSE;
while (!done) {
OpCode opcode = n[0].opcode;
int i = (int) n[0].opcode - (int) OPCODE_EXT_0;
if (i >= 0 && i < (GLint) ctx->ListExt.NumOpcodes) {
/* this is a driver-extended opcode */
ctx->ListExt.Opcode[i].Execute(ctx, &n[1]);
n += ctx->ListExt.Opcode[i].Size;
}
else {
switch (opcode) {
case OPCODE_ERROR:
_mesa_error(ctx, n[1].e, (const char *) n[2].data);
break;
case OPCODE_ACCUM:
CALL_Accum(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ALPHA_FUNC:
CALL_AlphaFunc(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_BIND_TEXTURE:
CALL_BindTexture(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_BITMAP:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_Bitmap(ctx->Exec, ((GLsizei) n[1].i, (GLsizei) n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f,
(const GLubyte *) n[7].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_BLEND_COLOR:
CALL_BlendColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_BLEND_EQUATION:
CALL_BlendEquation(ctx->Exec, (n[1].e));
break;
case OPCODE_BLEND_EQUATION_SEPARATE:
CALL_BlendEquationSeparateEXT(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_BLEND_FUNC_SEPARATE:
CALL_BlendFuncSeparateEXT(ctx->Exec,
(n[1].e, n[2].e, n[3].e, n[4].e));
break;
case OPCODE_CALL_LIST:
/* Generated by glCallList(), don't add ListBase */
if (ctx->ListState.CallDepth < MAX_LIST_NESTING) {
execute_list(ctx, n[1].ui);
}
break;
case OPCODE_CALL_LIST_OFFSET:
/* Generated by glCallLists() so we must add ListBase */
if (n[2].b) {
/* user specified a bad data type at compile time */
_mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)");
}
else if (ctx->ListState.CallDepth < MAX_LIST_NESTING) {
GLuint list = (GLuint) (ctx->List.ListBase + n[1].i);
execute_list(ctx, list);
}
break;
case OPCODE_CLEAR:
CALL_Clear(ctx->Exec, (n[1].bf));
break;
case OPCODE_CLEAR_COLOR:
CALL_ClearColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_CLEAR_ACCUM:
CALL_ClearAccum(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_CLEAR_DEPTH:
CALL_ClearDepth(ctx->Exec, ((GLclampd) n[1].f));
break;
case OPCODE_CLEAR_INDEX:
CALL_ClearIndex(ctx->Exec, ((GLfloat) n[1].ui));
break;
case OPCODE_CLEAR_STENCIL:
CALL_ClearStencil(ctx->Exec, (n[1].i));
break;
case OPCODE_CLIP_PLANE:
{
GLdouble eq[4];
eq[0] = n[2].f;
eq[1] = n[3].f;
eq[2] = n[4].f;
eq[3] = n[5].f;
CALL_ClipPlane(ctx->Exec, (n[1].e, eq));
}
break;
case OPCODE_COLOR_MASK:
CALL_ColorMask(ctx->Exec, (n[1].b, n[2].b, n[3].b, n[4].b));
break;
case OPCODE_COLOR_MATERIAL:
CALL_ColorMaterial(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_COLOR_TABLE:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_ColorTable(ctx->Exec, (n[1].e, n[2].e, n[3].i, n[4].e,
n[5].e, n[6].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_COLOR_TABLE_PARAMETER_FV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_ColorTableParameterfv(ctx->Exec,
(n[1].e, n[2].e, params));
}
break;
case OPCODE_COLOR_TABLE_PARAMETER_IV:
{
GLint params[4];
params[0] = n[3].i;
params[1] = n[4].i;
params[2] = n[5].i;
params[3] = n[6].i;
CALL_ColorTableParameteriv(ctx->Exec,
(n[1].e, n[2].e, params));
}
break;
case OPCODE_COLOR_SUB_TABLE:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_ColorSubTable(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].e, n[5].e, n[6].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_CONVOLUTION_FILTER_1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_ConvolutionFilter1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].e, n[5].e,
n[6].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_CONVOLUTION_FILTER_2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_ConvolutionFilter2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e, n[6].e,
n[7].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_CONVOLUTION_PARAMETER_I:
CALL_ConvolutionParameteri(ctx->Exec, (n[1].e, n[2].e, n[3].i));
break;
case OPCODE_CONVOLUTION_PARAMETER_IV:
{
GLint params[4];
params[0] = n[3].i;
params[1] = n[4].i;
params[2] = n[5].i;
params[3] = n[6].i;
CALL_ConvolutionParameteriv(ctx->Exec,
(n[1].e, n[2].e, params));
}
break;
case OPCODE_CONVOLUTION_PARAMETER_F:
CALL_ConvolutionParameterf(ctx->Exec, (n[1].e, n[2].e, n[3].f));
break;
case OPCODE_CONVOLUTION_PARAMETER_FV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_ConvolutionParameterfv(ctx->Exec,
(n[1].e, n[2].e, params));
}
break;
case OPCODE_COPY_COLOR_SUB_TABLE:
CALL_CopyColorSubTable(ctx->Exec, (n[1].e, n[2].i,
n[3].i, n[4].i, n[5].i));
break;
case OPCODE_COPY_COLOR_TABLE:
CALL_CopyColorSubTable(ctx->Exec, (n[1].e, n[2].i,
n[3].i, n[4].i, n[5].i));
break;
case OPCODE_COPY_PIXELS:
CALL_CopyPixels(ctx->Exec, (n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i,
n[5].e));
break;
case OPCODE_COPY_TEX_IMAGE1D:
CALL_CopyTexImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i));
break;
case OPCODE_COPY_TEX_IMAGE2D:
CALL_CopyTexImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE1D:
CALL_CopyTexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE2D:
CALL_CopyTexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE3D:
CALL_CopyTexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i, n[9].i));
break;
case OPCODE_CULL_FACE:
CALL_CullFace(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_FUNC:
CALL_DepthFunc(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_MASK:
CALL_DepthMask(ctx->Exec, (n[1].b));
break;
case OPCODE_DEPTH_RANGE:
CALL_DepthRange(ctx->Exec,
((GLclampd) n[1].f, (GLclampd) n[2].f));
break;
case OPCODE_DISABLE:
CALL_Disable(ctx->Exec, (n[1].e));
break;
case OPCODE_DRAW_BUFFER:
CALL_DrawBuffer(ctx->Exec, (n[1].e));
break;
case OPCODE_DRAW_PIXELS:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_DrawPixels(ctx->Exec, (n[1].i, n[2].i, n[3].e, n[4].e,
n[5].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_ENABLE:
CALL_Enable(ctx->Exec, (n[1].e));
break;
case OPCODE_EVALMESH1:
CALL_EvalMesh1(ctx->Exec, (n[1].e, n[2].i, n[3].i));
break;
case OPCODE_EVALMESH2:
CALL_EvalMesh2(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i, n[5].i));
break;
case OPCODE_FOG:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
CALL_Fogfv(ctx->Exec, (n[1].e, p));
}
break;
case OPCODE_FRONT_FACE:
CALL_FrontFace(ctx->Exec, (n[1].e));
break;
case OPCODE_FRUSTUM:
CALL_Frustum(ctx->Exec,
(n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_HINT:
CALL_Hint(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_HISTOGRAM:
CALL_Histogram(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].b));
break;
case OPCODE_INDEX_MASK:
CALL_IndexMask(ctx->Exec, (n[1].ui));
break;
case OPCODE_INIT_NAMES:
CALL_InitNames(ctx->Exec, ());
break;
case OPCODE_LIGHT:
{
GLfloat p[4];
p[0] = n[3].f;
p[1] = n[4].f;
p[2] = n[5].f;
p[3] = n[6].f;
CALL_Lightfv(ctx->Exec, (n[1].e, n[2].e, p));
}
break;
case OPCODE_LIGHT_MODEL:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
CALL_LightModelfv(ctx->Exec, (n[1].e, p));
}
break;
case OPCODE_LINE_STIPPLE:
CALL_LineStipple(ctx->Exec, (n[1].i, n[2].us));
break;
case OPCODE_LINE_WIDTH:
CALL_LineWidth(ctx->Exec, (n[1].f));
break;
case OPCODE_LIST_BASE:
CALL_ListBase(ctx->Exec, (n[1].ui));
break;
case OPCODE_LOAD_IDENTITY:
CALL_LoadIdentity(ctx->Exec, ());
break;
case OPCODE_LOAD_MATRIX:
if (sizeof(Node) == sizeof(GLfloat)) {
CALL_LoadMatrixf(ctx->Exec, (&n[1].f));
}
else {
GLfloat m[16];
GLuint i;
for (i = 0; i < 16; i++) {
m[i] = n[1 + i].f;
}
CALL_LoadMatrixf(ctx->Exec, (m));
}
break;
case OPCODE_LOAD_NAME:
CALL_LoadName(ctx->Exec, (n[1].ui));
break;
case OPCODE_LOGIC_OP:
CALL_LogicOp(ctx->Exec, (n[1].e));
break;
case OPCODE_MAP1:
{
GLenum target = n[1].e;
GLint ustride = _mesa_evaluator_components(target);
GLint uorder = n[5].i;
GLfloat u1 = n[2].f;
GLfloat u2 = n[3].f;
CALL_Map1f(ctx->Exec, (target, u1, u2, ustride, uorder,
(GLfloat *) n[6].data));
}
break;
case OPCODE_MAP2:
{
GLenum target = n[1].e;
GLfloat u1 = n[2].f;
GLfloat u2 = n[3].f;
GLfloat v1 = n[4].f;
GLfloat v2 = n[5].f;
GLint ustride = n[6].i;
GLint vstride = n[7].i;
GLint uorder = n[8].i;
GLint vorder = n[9].i;
CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder,
(GLfloat *) n[10].data));
}
break;
case OPCODE_MAPGRID1:
CALL_MapGrid1f(ctx->Exec, (n[1].i, n[2].f, n[3].f));
break;
case OPCODE_MAPGRID2:
CALL_MapGrid2f(ctx->Exec,
(n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f));
break;
case OPCODE_MATRIX_MODE:
CALL_MatrixMode(ctx->Exec, (n[1].e));
break;
case OPCODE_MIN_MAX:
CALL_Minmax(ctx->Exec, (n[1].e, n[2].e, n[3].b));
break;
case OPCODE_MULT_MATRIX:
if (sizeof(Node) == sizeof(GLfloat)) {
CALL_MultMatrixf(ctx->Exec, (&n[1].f));
}
else {
GLfloat m[16];
GLuint i;
for (i = 0; i < 16; i++) {
m[i] = n[1 + i].f;
}
CALL_MultMatrixf(ctx->Exec, (m));
}
break;
case OPCODE_ORTHO:
CALL_Ortho(ctx->Exec,
(n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_PASSTHROUGH:
CALL_PassThrough(ctx->Exec, (n[1].f));
break;
case OPCODE_PIXEL_MAP:
CALL_PixelMapfv(ctx->Exec,
(n[1].e, n[2].i, (GLfloat *) n[3].data));
break;
case OPCODE_PIXEL_TRANSFER:
CALL_PixelTransferf(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_PIXEL_ZOOM:
CALL_PixelZoom(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_POINT_SIZE:
CALL_PointSize(ctx->Exec, (n[1].f));
break;
case OPCODE_POINT_PARAMETERS:
{
GLfloat params[3];
params[0] = n[2].f;
params[1] = n[3].f;
params[2] = n[4].f;
CALL_PointParameterfvEXT(ctx->Exec, (n[1].e, params));
}
break;
case OPCODE_POLYGON_MODE:
CALL_PolygonMode(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_POLYGON_STIPPLE:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_PolygonStipple(ctx->Exec, ((GLubyte *) n[1].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_POLYGON_OFFSET:
CALL_PolygonOffset(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_POP_ATTRIB:
CALL_PopAttrib(ctx->Exec, ());
break;
case OPCODE_POP_MATRIX:
CALL_PopMatrix(ctx->Exec, ());
break;
case OPCODE_POP_NAME:
CALL_PopName(ctx->Exec, ());
break;
case OPCODE_PRIORITIZE_TEXTURE:
CALL_PrioritizeTextures(ctx->Exec, (1, &n[1].ui, &n[2].f));
break;
case OPCODE_PUSH_ATTRIB:
CALL_PushAttrib(ctx->Exec, (n[1].bf));
break;
case OPCODE_PUSH_MATRIX:
CALL_PushMatrix(ctx->Exec, ());
break;
case OPCODE_PUSH_NAME:
CALL_PushName(ctx->Exec, (n[1].ui));
break;
case OPCODE_RASTER_POS:
CALL_RasterPos4f(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_READ_BUFFER:
CALL_ReadBuffer(ctx->Exec, (n[1].e));
break;
case OPCODE_RESET_HISTOGRAM:
CALL_ResetHistogram(ctx->Exec, (n[1].e));
break;
case OPCODE_RESET_MIN_MAX:
CALL_ResetMinmax(ctx->Exec, (n[1].e));
break;
case OPCODE_ROTATE:
CALL_Rotatef(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_SCALE:
CALL_Scalef(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_SCISSOR:
CALL_Scissor(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_SHADE_MODEL:
CALL_ShadeModel(ctx->Exec, (n[1].e));
break;
case OPCODE_STENCIL_FUNC:
CALL_StencilFunc(ctx->Exec, (n[1].e, n[2].i, n[3].ui));
break;
case OPCODE_STENCIL_MASK:
CALL_StencilMask(ctx->Exec, (n[1].ui));
break;
case OPCODE_STENCIL_OP:
CALL_StencilOp(ctx->Exec, (n[1].e, n[2].e, n[3].e));
break;
case OPCODE_STENCIL_FUNC_SEPARATE:
CALL_StencilFuncSeparate(ctx->Exec,
(n[1].e, n[2].e, n[3].i, n[4].ui));
break;
case OPCODE_STENCIL_MASK_SEPARATE:
CALL_StencilMaskSeparate(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_STENCIL_OP_SEPARATE:
CALL_StencilOpSeparate(ctx->Exec,
(n[1].e, n[2].e, n[3].e, n[4].e));
break;
case OPCODE_TEXENV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexEnvfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXGEN:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexGenfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXPARAMETER:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexParameterfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEX_IMAGE1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage1D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].e, /* border */
n[6].e, /* format */
n[7].e, /* type */
n[8].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_IMAGE2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage2D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].i, /* height */
n[6].e, /* border */
n[7].e, /* format */
n[8].e, /* type */
n[9].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_IMAGE3D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage3D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].i, /* height */
n[6].i, /* depth */
n[7].e, /* border */
n[8].e, /* format */
n[9].e, /* type */
n[10].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e,
n[6].e, n[7].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e,
n[6].i, n[7].e, n[8].e,
n[9].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE3D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i, n[9].e, n[10].e,
n[11].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TRANSLATE:
CALL_Translatef(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_VIEWPORT:
CALL_Viewport(ctx->Exec, (n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i));
break;
case OPCODE_WINDOW_POS:
CALL_WindowPos4fMESA(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_ACTIVE_TEXTURE: /* GL_ARB_multitexture */
CALL_ActiveTextureARB(ctx->Exec, (n[1].e));
break;
case OPCODE_COMPRESSED_TEX_IMAGE_1D: /* GL_ARB_texture_compression */
CALL_CompressedTexImage1DARB(ctx->Exec, (n[1].e, n[2].i, n[3].e,
n[4].i, n[5].i, n[6].i,
n[7].data));
break;
case OPCODE_COMPRESSED_TEX_IMAGE_2D: /* GL_ARB_texture_compression */
CALL_CompressedTexImage2DARB(ctx->Exec, (n[1].e, n[2].i, n[3].e,
n[4].i, n[5].i, n[6].i,
n[7].i, n[8].data));
break;
case OPCODE_COMPRESSED_TEX_IMAGE_3D: /* GL_ARB_texture_compression */
CALL_CompressedTexImage3DARB(ctx->Exec, (n[1].e, n[2].i, n[3].e,
n[4].i, n[5].i, n[6].i,
n[7].i, n[8].i,
n[9].data));
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D: /* GL_ARB_texture_compress */
CALL_CompressedTexSubImage1DARB(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i,
n[5].e, n[6].i, n[7].data));
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D: /* GL_ARB_texture_compress */
CALL_CompressedTexSubImage2DARB(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].e, n[8].i,
n[9].data));
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D: /* GL_ARB_texture_compress */
CALL_CompressedTexSubImage3DARB(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i,
n[9].e, n[10].i, n[11].data));
break;
case OPCODE_SAMPLE_COVERAGE: /* GL_ARB_multisample */
CALL_SampleCoverageARB(ctx->Exec, (n[1].f, n[2].b));
break;
case OPCODE_WINDOW_POS_ARB: /* GL_ARB_window_pos */
CALL_WindowPos3fMESA(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
#if FEATURE_NV_vertex_program || FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
case OPCODE_BIND_PROGRAM_NV: /* GL_NV_vertex_program */
CALL_BindProgramNV(ctx->Exec, (n[1].e, n[2].ui));
break;
#endif
#if FEATURE_NV_vertex_program
case OPCODE_EXECUTE_PROGRAM_NV:
{
GLfloat v[4];
v[0] = n[3].f;
v[1] = n[4].f;
v[2] = n[5].f;
v[3] = n[6].f;
CALL_ExecuteProgramNV(ctx->Exec, (n[1].e, n[2].ui, v));
}
break;
case OPCODE_REQUEST_RESIDENT_PROGRAMS_NV:
CALL_RequestResidentProgramsNV(ctx->Exec, (n[1].ui,
(GLuint *) n[2].data));
break;
case OPCODE_LOAD_PROGRAM_NV:
CALL_LoadProgramNV(ctx->Exec, (n[1].e, n[2].ui, n[3].i,
(const GLubyte *) n[4].data));
break;
case OPCODE_TRACK_MATRIX_NV:
CALL_TrackMatrixNV(ctx->Exec, (n[1].e, n[2].ui, n[3].e, n[4].e));
break;
#endif
#if FEATURE_NV_fragment_program
case OPCODE_PROGRAM_LOCAL_PARAMETER_ARB:
CALL_ProgramLocalParameter4fARB(ctx->Exec,
(n[1].e, n[2].ui, n[3].f, n[4].f,
n[5].f, n[6].f));
break;
case OPCODE_PROGRAM_NAMED_PARAMETER_NV:
CALL_ProgramNamedParameter4fNV(ctx->Exec, (n[1].ui, n[2].i,
(const GLubyte *) n[3].
data, n[4].f, n[5].f,
n[6].f, n[7].f));
break;
#endif
case OPCODE_ACTIVE_STENCIL_FACE_EXT:
CALL_ActiveStencilFaceEXT(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_BOUNDS_EXT:
CALL_DepthBoundsEXT(ctx->Exec, (n[1].f, n[2].f));
break;
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
case OPCODE_PROGRAM_STRING_ARB:
CALL_ProgramStringARB(ctx->Exec,
(n[1].e, n[2].e, n[3].i, n[4].data));
break;
#endif
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program || FEATURE_NV_vertex_program
case OPCODE_PROGRAM_ENV_PARAMETER_ARB:
CALL_ProgramEnvParameter4fARB(ctx->Exec, (n[1].e, n[2].ui, n[3].f,
n[4].f, n[5].f,
n[6].f));
break;
#endif
#if FEATURE_ARB_occlusion_query
case OPCODE_BEGIN_QUERY_ARB:
CALL_BeginQueryARB(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_END_QUERY_ARB:
CALL_EndQueryARB(ctx->Exec, (n[1].e));
break;
#endif
case OPCODE_DRAW_BUFFERS_ARB:
{
GLenum buffers[MAX_DRAW_BUFFERS];
GLint i, count = MIN2(n[1].i, MAX_DRAW_BUFFERS);
for (i = 0; i < count; i++)
buffers[i] = n[2 + i].e;
CALL_DrawBuffersARB(ctx->Exec, (n[1].i, buffers));
}
break;
#if FEATURE_EXT_framebuffer_blit
case OPCODE_BLIT_FRAMEBUFFER:
CALL_BlitFramebufferEXT(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i,
n[9].i, n[10].e));
break;
#endif
#if FEATURE_ATI_fragment_shader
case OPCODE_BIND_FRAGMENT_SHADER_ATI:
CALL_BindFragmentShaderATI(ctx->Exec, (n[1].i));
break;
case OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI:
{
GLfloat values[4];
GLuint i, dst = n[1].ui;
for (i = 0; i < 4; i++)
values[i] = n[1 + i].f;
CALL_SetFragmentShaderConstantATI(ctx->Exec, (dst, values));
}
break;
#endif
case OPCODE_ATTR_1F_NV:
CALL_VertexAttrib1fNV(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ATTR_2F_NV:
/* Really shouldn't have to do this - the Node structure
* is convenient, but it would be better to store the data
* packed appropriately so that it can be sent directly
* on. With x86_64 becoming common, this will start to
* matter more.
*/
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib2fvNV(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib2fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f));
break;
case OPCODE_ATTR_3F_NV:
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib3fvNV(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib3fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f,
n[4].f));
break;
case OPCODE_ATTR_4F_NV:
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib4fvNV(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib4fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f,
n[4].f, n[5].f));
break;
case OPCODE_ATTR_1F_ARB:
CALL_VertexAttrib1fARB(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ATTR_2F_ARB:
/* Really shouldn't have to do this - the Node structure
* is convenient, but it would be better to store the data
* packed appropriately so that it can be sent directly
* on. With x86_64 becoming common, this will start to
* matter more.
*/
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib2fvARB(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib2fARB(ctx->Exec, (n[1].e, n[2].f, n[3].f));
break;
case OPCODE_ATTR_3F_ARB:
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib3fvARB(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib3fARB(ctx->Exec, (n[1].e, n[2].f, n[3].f,
n[4].f));
break;
case OPCODE_ATTR_4F_ARB:
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib4fvARB(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib4fARB(ctx->Exec, (n[1].e, n[2].f, n[3].f,
n[4].f, n[5].f));
break;
case OPCODE_MATERIAL:
if (sizeof(Node) == sizeof(GLfloat))
CALL_Materialfv(ctx->Exec, (n[1].e, n[2].e, &n[3].f));
else {
GLfloat f[4];
f[0] = n[3].f;
f[1] = n[4].f;
f[2] = n[5].f;
f[3] = n[6].f;
CALL_Materialfv(ctx->Exec, (n[1].e, n[2].e, f));
}
break;
case OPCODE_BEGIN:
CALL_Begin(ctx->Exec, (n[1].e));
break;
case OPCODE_END:
CALL_End(ctx->Exec, ());
break;
case OPCODE_RECTF:
CALL_Rectf(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_EVAL_C1:
CALL_EvalCoord1f(ctx->Exec, (n[1].f));
break;
case OPCODE_EVAL_C2:
CALL_EvalCoord2f(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_EVAL_P1:
CALL_EvalPoint1(ctx->Exec, (n[1].i));
break;
case OPCODE_EVAL_P2:
CALL_EvalPoint2(ctx->Exec, (n[1].i, n[2].i));
break;
case OPCODE_CONTINUE:
n = (Node *) n[1].next;
break;
case OPCODE_END_OF_LIST:
done = GL_TRUE;
break;
default:
{
char msg[1000];
_mesa_sprintf(msg, "Error in execute_list: opcode=%d",
(int) opcode);
_mesa_problem(ctx, msg);
}
done = GL_TRUE;
}
/* increment n to point to next compiled command */
if (opcode != OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
}
if (ctx->Driver.EndCallList)
ctx->Driver.EndCallList(ctx);
ctx->ListState.CallDepth--;
}
/**********************************************************************/
/* GL functions */
/**********************************************************************/
/**
* Test if a display list number is valid.
*/
GLboolean GLAPIENTRY
_mesa_IsList(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
return islist(ctx, list);
}
/**
* Delete a sequence of consecutive display lists.
*/
void GLAPIENTRY
_mesa_DeleteLists(GLuint list, GLsizei range)
{
GET_CURRENT_CONTEXT(ctx);
GLuint i;
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (range < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDeleteLists");
return;
}
for (i = list; i < list + range; i++) {
destroy_list(ctx, i);
}
}
/**
* Return a display list number, n, such that lists n through n+range-1
* are free.
*/
GLuint GLAPIENTRY
_mesa_GenLists(GLsizei range)
{
GET_CURRENT_CONTEXT(ctx);
GLuint base;
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0);
if (range < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glGenLists");
return 0;
}
if (range == 0) {
return 0;
}
/*
* Make this an atomic operation
*/
_glthread_LOCK_MUTEX(ctx->Shared->Mutex);
base = _mesa_HashFindFreeKeyBlock(ctx->Shared->DisplayList, range);
if (base) {
/* reserve the list IDs by with empty/dummy lists */
GLint i;
for (i = 0; i < range; i++) {
_mesa_HashInsert(ctx->Shared->DisplayList, base + i,
make_list(base + i, 1));
}
}
_glthread_UNLOCK_MUTEX(ctx->Shared->Mutex);
return base;
}
/**
* Begin a new display list.
*/
void GLAPIENTRY
_mesa_NewList(GLuint list, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
FLUSH_CURRENT(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glNewList %u %s\n", list,
_mesa_lookup_enum_by_nr(mode));
if (list == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glNewList");
return;
}
if (mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE) {
_mesa_error(ctx, GL_INVALID_ENUM, "glNewList");
return;
}
if (ctx->ListState.CurrentListPtr) {
/* already compiling a display list */
_mesa_error(ctx, GL_INVALID_OPERATION, "glNewList");
return;
}
ctx->CompileFlag = GL_TRUE;
ctx->ExecuteFlag = (mode == GL_COMPILE_AND_EXECUTE);
/* Allocate new display list */
ctx->ListState.CurrentListNum = list;
ctx->ListState.CurrentList = make_list(list, BLOCK_SIZE);
ctx->ListState.CurrentBlock = ctx->ListState.CurrentList->node;
ctx->ListState.CurrentListPtr = ctx->ListState.CurrentBlock;
ctx->ListState.CurrentPos = 0;
/* Reset acumulated list state:
*/
for (i = 0; i < VERT_ATTRIB_MAX; i++)
ctx->ListState.ActiveAttribSize[i] = 0;
for (i = 0; i < MAT_ATTRIB_MAX; i++)
ctx->ListState.ActiveMaterialSize[i] = 0;
ctx->Driver.CurrentSavePrimitive = PRIM_UNKNOWN;
ctx->Driver.NewList(ctx, list, mode);
ctx->CurrentDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
/**
* End definition of current display list.
*/
void GLAPIENTRY
_mesa_EndList(void)
{
GET_CURRENT_CONTEXT(ctx);
SAVE_FLUSH_VERTICES(ctx);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glEndList\n");
/* Check that a list is under construction */
if (!ctx->ListState.CurrentListPtr) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glEndList");
return;
}
/* Call before emitting END_OF_LIST, in case the driver wants to
* emit opcodes itself.
*/
ctx->Driver.EndList(ctx);
(void) ALLOC_INSTRUCTION(ctx, OPCODE_END_OF_LIST, 0);
/* Destroy old list, if any */
destroy_list(ctx, ctx->ListState.CurrentListNum);
/* Install the list */
_mesa_HashInsert(ctx->Shared->DisplayList, ctx->ListState.CurrentListNum,
ctx->ListState.CurrentList);
if (MESA_VERBOSE & VERBOSE_DISPLAY_LIST)
mesa_print_display_list(ctx->ListState.CurrentListNum);
ctx->ListState.CurrentList = NULL;
ctx->ListState.CurrentListNum = 0;
ctx->ListState.CurrentListPtr = NULL;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->CurrentDispatch = ctx->Exec;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
void GLAPIENTRY
_mesa_CallList(GLuint list)
{
GLboolean save_compile_flag;
GET_CURRENT_CONTEXT(ctx);
FLUSH_CURRENT(ctx, 0);
/* VERY IMPORTANT: Save the CompileFlag status, turn it off, */
/* execute the display list, and restore the CompileFlag. */
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glCallList %d\n", list);
if (list == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glCallList(list==0)");
return;
}
/* mesa_print_display_list( list ); */
save_compile_flag = ctx->CompileFlag;
if (save_compile_flag) {
ctx->CompileFlag = GL_FALSE;
}
execute_list(ctx, list);
ctx->CompileFlag = save_compile_flag;
/* also restore API function pointers to point to "save" versions */
if (save_compile_flag) {
ctx->CurrentDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
}
/**
* Execute glCallLists: call multiple display lists.
*/
void GLAPIENTRY
_mesa_CallLists(GLsizei n, GLenum type, const GLvoid * lists)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
GLboolean save_compile_flag;
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glCallLists %d\n", n);
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
/* OK */
break;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)");
return;
}
/* Save the CompileFlag status, turn it off, execute display list,
* and restore the CompileFlag.
*/
save_compile_flag = ctx->CompileFlag;
ctx->CompileFlag = GL_FALSE;
for (i = 0; i < n; i++) {
GLuint list = (GLuint) (ctx->List.ListBase + translate_id(i, type, lists));
execute_list(ctx, list);
}
ctx->CompileFlag = save_compile_flag;
/* also restore API function pointers to point to "save" versions */
if (save_compile_flag) {
ctx->CurrentDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
}
/**
* Set the offset added to list numbers in glCallLists.
*/
void GLAPIENTRY
_mesa_ListBase(GLuint base)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
ctx->List.ListBase = base;
}
/* Can no longer assume ctx->Exec->Func is equal to _mesa_Func.
*/
static void GLAPIENTRY
exec_Finish(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_Finish(ctx->Exec, ());
}
static void GLAPIENTRY
exec_Flush(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_Flush(ctx->Exec, ());
}
static void GLAPIENTRY
exec_GetBooleanv(GLenum pname, GLboolean *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetBooleanv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_GetClipPlane(GLenum plane, GLdouble * equation)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetClipPlane(ctx->Exec, (plane, equation));
}
static void GLAPIENTRY
exec_GetDoublev(GLenum pname, GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetDoublev(ctx->Exec, (pname, params));
}
static GLenum GLAPIENTRY
exec_GetError(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_GetError(ctx->Exec, ());
}
static void GLAPIENTRY
exec_GetFloatv(GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetFloatv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_GetIntegerv(GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetIntegerv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_GetLightfv(GLenum light, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetLightfv(ctx->Exec, (light, pname, params));
}
static void GLAPIENTRY
exec_GetLightiv(GLenum light, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetLightiv(ctx->Exec, (light, pname, params));
}
static void GLAPIENTRY
exec_GetMapdv(GLenum target, GLenum query, GLdouble * v)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMapdv(ctx->Exec, (target, query, v));
}
static void GLAPIENTRY
exec_GetMapfv(GLenum target, GLenum query, GLfloat * v)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMapfv(ctx->Exec, (target, query, v));
}
static void GLAPIENTRY
exec_GetMapiv(GLenum target, GLenum query, GLint * v)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMapiv(ctx->Exec, (target, query, v));
}
static void GLAPIENTRY
exec_GetMaterialfv(GLenum face, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMaterialfv(ctx->Exec, (face, pname, params));
}
static void GLAPIENTRY
exec_GetMaterialiv(GLenum face, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMaterialiv(ctx->Exec, (face, pname, params));
}
static void GLAPIENTRY
exec_GetPixelMapfv(GLenum map, GLfloat *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPixelMapfv(ctx->Exec, (map, values));
}
static void GLAPIENTRY
exec_GetPixelMapuiv(GLenum map, GLuint *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPixelMapuiv(ctx->Exec, (map, values));
}
static void GLAPIENTRY
exec_GetPixelMapusv(GLenum map, GLushort *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPixelMapusv(ctx->Exec, (map, values));
}
static void GLAPIENTRY
exec_GetPolygonStipple(GLubyte * dest)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPolygonStipple(ctx->Exec, (dest));
}
static const GLubyte *GLAPIENTRY
exec_GetString(GLenum name)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_GetString(ctx->Exec, (name));
}
static void GLAPIENTRY
exec_GetTexEnvfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexEnvfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetTexEnviv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexEnviv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetTexGendv(GLenum coord, GLenum pname, GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexGendv(ctx->Exec, (coord, pname, params));
}
static void GLAPIENTRY
exec_GetTexGenfv(GLenum coord, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexGenfv(ctx->Exec, (coord, pname, params));
}
static void GLAPIENTRY
exec_GetTexGeniv(GLenum coord, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexGeniv(ctx->Exec, (coord, pname, params));
}
static void GLAPIENTRY
exec_GetTexImage(GLenum target, GLint level, GLenum format,
GLenum type, GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexImage(ctx->Exec, (target, level, format, type, pixels));
}
static void GLAPIENTRY
exec_GetTexLevelParameterfv(GLenum target, GLint level,
GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexLevelParameterfv(ctx->Exec, (target, level, pname, params));
}
static void GLAPIENTRY
exec_GetTexLevelParameteriv(GLenum target, GLint level,
GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexLevelParameteriv(ctx->Exec, (target, level, pname, params));
}
static void GLAPIENTRY
exec_GetTexParameterfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexParameterfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetTexParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexParameteriv(ctx->Exec, (target, pname, params));
}
static GLboolean GLAPIENTRY
exec_IsEnabled(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_IsEnabled(ctx->Exec, (cap));
}
static void GLAPIENTRY
exec_PixelStoref(GLenum pname, GLfloat param)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PixelStoref(ctx->Exec, (pname, param));
}
static void GLAPIENTRY
exec_PixelStorei(GLenum pname, GLint param)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PixelStorei(ctx->Exec, (pname, param));
}
static void GLAPIENTRY
exec_ReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ReadPixels(ctx->Exec, (x, y, width, height, format, type, pixels));
}
static GLint GLAPIENTRY
exec_RenderMode(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_RenderMode(ctx->Exec, (mode));
}
static void GLAPIENTRY
exec_FeedbackBuffer(GLsizei size, GLenum type, GLfloat * buffer)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_FeedbackBuffer(ctx->Exec, (size, type, buffer));
}
static void GLAPIENTRY
exec_SelectBuffer(GLsizei size, GLuint * buffer)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_SelectBuffer(ctx->Exec, (size, buffer));
}
static GLboolean GLAPIENTRY
exec_AreTexturesResident(GLsizei n, const GLuint * texName,
GLboolean * residences)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_AreTexturesResident(ctx->Exec, (n, texName, residences));
}
static void GLAPIENTRY
exec_ColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ColorPointer(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_DeleteTextures(GLsizei n, const GLuint * texName)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_DeleteTextures(ctx->Exec, (n, texName));
}
static void GLAPIENTRY
exec_DisableClientState(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_DisableClientState(ctx->Exec, (cap));
}
static void GLAPIENTRY
exec_EdgeFlagPointer(GLsizei stride, const GLvoid * vptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_EdgeFlagPointer(ctx->Exec, (stride, vptr));
}
static void GLAPIENTRY
exec_EnableClientState(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_EnableClientState(ctx->Exec, (cap));
}
static void GLAPIENTRY
exec_GenTextures(GLsizei n, GLuint * texName)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GenTextures(ctx->Exec, (n, texName));
}
static void GLAPIENTRY
exec_GetPointerv(GLenum pname, GLvoid **params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPointerv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_IndexPointer(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_IndexPointer(ctx->Exec, (type, stride, ptr));
}
static void GLAPIENTRY
exec_InterleavedArrays(GLenum format, GLsizei stride, const GLvoid * pointer)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_InterleavedArrays(ctx->Exec, (format, stride, pointer));
}
static GLboolean GLAPIENTRY
exec_IsTexture(GLuint texture)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_IsTexture(ctx->Exec, (texture));
}
static void GLAPIENTRY
exec_NormalPointer(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_NormalPointer(ctx->Exec, (type, stride, ptr));
}
static void GLAPIENTRY
exec_PopClientAttrib(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PopClientAttrib(ctx->Exec, ());
}
static void GLAPIENTRY
exec_PushClientAttrib(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PushClientAttrib(ctx->Exec, (mask));
}
static void GLAPIENTRY
exec_TexCoordPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_TexCoordPointer(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_GetCompressedTexImageARB(GLenum target, GLint level, GLvoid * img)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetCompressedTexImageARB(ctx->Exec, (target, level, img));
}
static void GLAPIENTRY
exec_VertexPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_VertexPointer(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_CopyConvolutionFilter1D(GLenum target, GLenum internalFormat,
GLint x, GLint y, GLsizei width)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_CopyConvolutionFilter1D(ctx->Exec,
(target, internalFormat, x, y, width));
}
static void GLAPIENTRY
exec_CopyConvolutionFilter2D(GLenum target, GLenum internalFormat,
GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_CopyConvolutionFilter2D(ctx->Exec,
(target, internalFormat, x, y, width,
height));
}
static void GLAPIENTRY
exec_GetColorTable(GLenum target, GLenum format, GLenum type, GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetColorTable(ctx->Exec, (target, format, type, data));
}
static void GLAPIENTRY
exec_GetColorTableParameterfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetColorTableParameterfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetColorTableParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetColorTableParameteriv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetConvolutionFilter(GLenum target, GLenum format, GLenum type,
GLvoid * image)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetConvolutionFilter(ctx->Exec, (target, format, type, image));
}
static void GLAPIENTRY
exec_GetConvolutionParameterfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetConvolutionParameterfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetConvolutionParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetConvolutionParameteriv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetHistogram(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetHistogram(ctx->Exec, (target, reset, format, type, values));
}
static void GLAPIENTRY
exec_GetHistogramParameterfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetHistogramParameterfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetHistogramParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetHistogramParameteriv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetMinmax(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMinmax(ctx->Exec, (target, reset, format, type, values));
}
static void GLAPIENTRY
exec_GetMinmaxParameterfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMinmaxParameterfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetMinmaxParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMinmaxParameteriv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetSeparableFilter(GLenum target, GLenum format, GLenum type,
GLvoid *row, GLvoid *column, GLvoid *span)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetSeparableFilter(ctx->Exec,
(target, format, type, row, column, span));
}
static void GLAPIENTRY
exec_SeparableFilter2D(GLenum target, GLenum internalFormat,
GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid *row, const GLvoid *column)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_SeparableFilter2D(ctx->Exec,
(target, internalFormat, width, height, format,
type, row, column));
}
static void GLAPIENTRY
exec_ColorPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ColorPointerEXT(ctx->Exec, (size, type, stride, count, ptr));
}
static void GLAPIENTRY
exec_EdgeFlagPointerEXT(GLsizei stride, GLsizei count, const GLboolean *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_EdgeFlagPointerEXT(ctx->Exec, (stride, count, ptr));
}
static void GLAPIENTRY
exec_IndexPointerEXT(GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_IndexPointerEXT(ctx->Exec, (type, stride, count, ptr));
}
static void GLAPIENTRY
exec_NormalPointerEXT(GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_NormalPointerEXT(ctx->Exec, (type, stride, count, ptr));
}
static void GLAPIENTRY
exec_TexCoordPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_TexCoordPointerEXT(ctx->Exec, (size, type, stride, count, ptr));
}
static void GLAPIENTRY
exec_VertexPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_VertexPointerEXT(ctx->Exec, (size, type, stride, count, ptr));
}
static void GLAPIENTRY
exec_LockArraysEXT(GLint first, GLsizei count)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_LockArraysEXT(ctx->Exec, (first, count));
}
static void GLAPIENTRY
exec_UnlockArraysEXT(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_UnlockArraysEXT(ctx->Exec, ());
}
static void GLAPIENTRY
exec_ClientActiveTextureARB(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ClientActiveTextureARB(ctx->Exec, (target));
}
static void GLAPIENTRY
exec_SecondaryColorPointerEXT(GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_SecondaryColorPointerEXT(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_FogCoordPointerEXT(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_FogCoordPointerEXT(ctx->Exec, (type, stride, ptr));
}
/* GL_EXT_multi_draw_arrays */
static void GLAPIENTRY
exec_MultiDrawArraysEXT(GLenum mode, GLint * first,
GLsizei * count, GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_MultiDrawArraysEXT(ctx->Exec, (mode, first, count, primcount));
}
/* GL_EXT_multi_draw_arrays */
static void GLAPIENTRY
exec_MultiDrawElementsEXT(GLenum mode, const GLsizei * count,
GLenum type, const GLvoid ** indices,
GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_MultiDrawElementsEXT(ctx->Exec,
(mode, count, type, indices, primcount));
}
/* GL_IBM_multimode_draw_arrays */
static void GLAPIENTRY
exec_MultiModeDrawArraysIBM(const GLenum * mode, const GLint * first,
const GLsizei * count, GLsizei primcount,
GLint modestride)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_MultiModeDrawArraysIBM(ctx->Exec,
(mode, first, count, primcount, modestride));
}
/* GL_IBM_multimode_draw_arrays */
static void GLAPIENTRY
exec_MultiModeDrawElementsIBM(const GLenum * mode,
const GLsizei * count,
GLenum type,
const GLvoid * const *indices,
GLsizei primcount, GLint modestride)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_MultiModeDrawElementsIBM(ctx->Exec,
(mode, count, type, indices, primcount,
modestride));
}
/**
* Setup the given dispatch table to point to Mesa's display list
* building functions.
*
* This does not include any of the tnl functions - they are
* initialized from _mesa_init_api_defaults and from the active vtxfmt
* struct.
*/
void
_mesa_init_dlist_table(struct _glapi_table *table)
{
_mesa_loopback_init_api_table(table);
/* GL 1.0 */
SET_Accum(table, save_Accum);
SET_AlphaFunc(table, save_AlphaFunc);
SET_Bitmap(table, save_Bitmap);
SET_BlendFunc(table, _mesa_BlendFunc); /* loops-back to BlendFuncSeparate */
SET_CallList(table, _mesa_save_CallList);
SET_CallLists(table, _mesa_save_CallLists);
SET_Clear(table, save_Clear);
SET_ClearAccum(table, save_ClearAccum);
SET_ClearColor(table, save_ClearColor);
SET_ClearDepth(table, save_ClearDepth);
SET_ClearIndex(table, save_ClearIndex);
SET_ClearStencil(table, save_ClearStencil);
SET_ClipPlane(table, save_ClipPlane);
SET_ColorMask(table, save_ColorMask);
SET_ColorMaterial(table, save_ColorMaterial);
SET_CopyPixels(table, save_CopyPixels);
SET_CullFace(table, save_CullFace);
SET_DeleteLists(table, _mesa_DeleteLists);
SET_DepthFunc(table, save_DepthFunc);
SET_DepthMask(table, save_DepthMask);
SET_DepthRange(table, save_DepthRange);
SET_Disable(table, save_Disable);
SET_DrawBuffer(table, save_DrawBuffer);
SET_DrawPixels(table, save_DrawPixels);
SET_Enable(table, save_Enable);
SET_EndList(table, _mesa_EndList);
SET_EvalMesh1(table, _mesa_save_EvalMesh1);
SET_EvalMesh2(table, _mesa_save_EvalMesh2);
SET_Finish(table, exec_Finish);
SET_Flush(table, exec_Flush);
SET_Fogf(table, save_Fogf);
SET_Fogfv(table, save_Fogfv);
SET_Fogi(table, save_Fogi);
SET_Fogiv(table, save_Fogiv);
SET_FrontFace(table, save_FrontFace);
SET_Frustum(table, save_Frustum);
SET_GenLists(table, _mesa_GenLists);
SET_GetBooleanv(table, exec_GetBooleanv);
SET_GetClipPlane(table, exec_GetClipPlane);
SET_GetDoublev(table, exec_GetDoublev);
SET_GetError(table, exec_GetError);
SET_GetFloatv(table, exec_GetFloatv);
SET_GetIntegerv(table, exec_GetIntegerv);
SET_GetLightfv(table, exec_GetLightfv);
SET_GetLightiv(table, exec_GetLightiv);
SET_GetMapdv(table, exec_GetMapdv);
SET_GetMapfv(table, exec_GetMapfv);
SET_GetMapiv(table, exec_GetMapiv);
SET_GetMaterialfv(table, exec_GetMaterialfv);
SET_GetMaterialiv(table, exec_GetMaterialiv);
SET_GetPixelMapfv(table, exec_GetPixelMapfv);
SET_GetPixelMapuiv(table, exec_GetPixelMapuiv);
SET_GetPixelMapusv(table, exec_GetPixelMapusv);
SET_GetPolygonStipple(table, exec_GetPolygonStipple);
SET_GetString(table, exec_GetString);
SET_GetTexEnvfv(table, exec_GetTexEnvfv);
SET_GetTexEnviv(table, exec_GetTexEnviv);
SET_GetTexGendv(table, exec_GetTexGendv);
SET_GetTexGenfv(table, exec_GetTexGenfv);
SET_GetTexGeniv(table, exec_GetTexGeniv);
SET_GetTexImage(table, exec_GetTexImage);
SET_GetTexLevelParameterfv(table, exec_GetTexLevelParameterfv);
SET_GetTexLevelParameteriv(table, exec_GetTexLevelParameteriv);
SET_GetTexParameterfv(table, exec_GetTexParameterfv);
SET_GetTexParameteriv(table, exec_GetTexParameteriv);
SET_Hint(table, save_Hint);
SET_IndexMask(table, save_IndexMask);
SET_InitNames(table, save_InitNames);
SET_IsEnabled(table, exec_IsEnabled);
SET_IsList(table, _mesa_IsList);
SET_LightModelf(table, save_LightModelf);
SET_LightModelfv(table, save_LightModelfv);
SET_LightModeli(table, save_LightModeli);
SET_LightModeliv(table, save_LightModeliv);
SET_Lightf(table, save_Lightf);
SET_Lightfv(table, save_Lightfv);
SET_Lighti(table, save_Lighti);
SET_Lightiv(table, save_Lightiv);
SET_LineStipple(table, save_LineStipple);
SET_LineWidth(table, save_LineWidth);
SET_ListBase(table, save_ListBase);
SET_LoadIdentity(table, save_LoadIdentity);
SET_LoadMatrixd(table, save_LoadMatrixd);
SET_LoadMatrixf(table, save_LoadMatrixf);
SET_LoadName(table, save_LoadName);
SET_LogicOp(table, save_LogicOp);
SET_Map1d(table, save_Map1d);
SET_Map1f(table, save_Map1f);
SET_Map2d(table, save_Map2d);
SET_Map2f(table, save_Map2f);
SET_MapGrid1d(table, save_MapGrid1d);
SET_MapGrid1f(table, save_MapGrid1f);
SET_MapGrid2d(table, save_MapGrid2d);
SET_MapGrid2f(table, save_MapGrid2f);
SET_MatrixMode(table, save_MatrixMode);
SET_MultMatrixd(table, save_MultMatrixd);
SET_MultMatrixf(table, save_MultMatrixf);
SET_NewList(table, save_NewList);
SET_Ortho(table, save_Ortho);
SET_PassThrough(table, save_PassThrough);
SET_PixelMapfv(table, save_PixelMapfv);
SET_PixelMapuiv(table, save_PixelMapuiv);
SET_PixelMapusv(table, save_PixelMapusv);
SET_PixelStoref(table, exec_PixelStoref);
SET_PixelStorei(table, exec_PixelStorei);
SET_PixelTransferf(table, save_PixelTransferf);
SET_PixelTransferi(table, save_PixelTransferi);
SET_PixelZoom(table, save_PixelZoom);
SET_PointSize(table, save_PointSize);
SET_PolygonMode(table, save_PolygonMode);
SET_PolygonOffset(table, save_PolygonOffset);
SET_PolygonStipple(table, save_PolygonStipple);
SET_PopAttrib(table, save_PopAttrib);
SET_PopMatrix(table, save_PopMatrix);
SET_PopName(table, save_PopName);
SET_PushAttrib(table, save_PushAttrib);
SET_PushMatrix(table, save_PushMatrix);
SET_PushName(table, save_PushName);
SET_RasterPos2d(table, save_RasterPos2d);
SET_RasterPos2dv(table, save_RasterPos2dv);
SET_RasterPos2f(table, save_RasterPos2f);
SET_RasterPos2fv(table, save_RasterPos2fv);
SET_RasterPos2i(table, save_RasterPos2i);
SET_RasterPos2iv(table, save_RasterPos2iv);
SET_RasterPos2s(table, save_RasterPos2s);
SET_RasterPos2sv(table, save_RasterPos2sv);
SET_RasterPos3d(table, save_RasterPos3d);
SET_RasterPos3dv(table, save_RasterPos3dv);
SET_RasterPos3f(table, save_RasterPos3f);
SET_RasterPos3fv(table, save_RasterPos3fv);
SET_RasterPos3i(table, save_RasterPos3i);
SET_RasterPos3iv(table, save_RasterPos3iv);
SET_RasterPos3s(table, save_RasterPos3s);
SET_RasterPos3sv(table, save_RasterPos3sv);
SET_RasterPos4d(table, save_RasterPos4d);
SET_RasterPos4dv(table, save_RasterPos4dv);
SET_RasterPos4f(table, save_RasterPos4f);
SET_RasterPos4fv(table, save_RasterPos4fv);
SET_RasterPos4i(table, save_RasterPos4i);
SET_RasterPos4iv(table, save_RasterPos4iv);
SET_RasterPos4s(table, save_RasterPos4s);
SET_RasterPos4sv(table, save_RasterPos4sv);
SET_ReadBuffer(table, save_ReadBuffer);
SET_ReadPixels(table, exec_ReadPixels);
SET_RenderMode(table, exec_RenderMode);
SET_Rotated(table, save_Rotated);
SET_Rotatef(table, save_Rotatef);
SET_Scaled(table, save_Scaled);
SET_Scalef(table, save_Scalef);
SET_Scissor(table, save_Scissor);
SET_FeedbackBuffer(table, exec_FeedbackBuffer);
SET_SelectBuffer(table, exec_SelectBuffer);
SET_ShadeModel(table, save_ShadeModel);
SET_StencilFunc(table, save_StencilFunc);
SET_StencilMask(table, save_StencilMask);
SET_StencilOp(table, save_StencilOp);
SET_TexEnvf(table, save_TexEnvf);
SET_TexEnvfv(table, save_TexEnvfv);
SET_TexEnvi(table, save_TexEnvi);
SET_TexEnviv(table, save_TexEnviv);
SET_TexGend(table, save_TexGend);
SET_TexGendv(table, save_TexGendv);
SET_TexGenf(table, save_TexGenf);
SET_TexGenfv(table, save_TexGenfv);
SET_TexGeni(table, save_TexGeni);
SET_TexGeniv(table, save_TexGeniv);
SET_TexImage1D(table, save_TexImage1D);
SET_TexImage2D(table, save_TexImage2D);
SET_TexParameterf(table, save_TexParameterf);
SET_TexParameterfv(table, save_TexParameterfv);
SET_TexParameteri(table, save_TexParameteri);
SET_TexParameteriv(table, save_TexParameteriv);
SET_Translated(table, save_Translated);
SET_Translatef(table, save_Translatef);
SET_Viewport(table, save_Viewport);
/* GL 1.1 */
SET_AreTexturesResident(table, exec_AreTexturesResident);
SET_BindTexture(table, save_BindTexture);
SET_ColorPointer(table, exec_ColorPointer);
SET_CopyTexImage1D(table, save_CopyTexImage1D);
SET_CopyTexImage2D(table, save_CopyTexImage2D);
SET_CopyTexSubImage1D(table, save_CopyTexSubImage1D);
SET_CopyTexSubImage2D(table, save_CopyTexSubImage2D);
SET_DeleteTextures(table, exec_DeleteTextures);
SET_DisableClientState(table, exec_DisableClientState);
SET_EdgeFlagPointer(table, exec_EdgeFlagPointer);
SET_EnableClientState(table, exec_EnableClientState);
SET_GenTextures(table, exec_GenTextures);
SET_GetPointerv(table, exec_GetPointerv);
SET_IndexPointer(table, exec_IndexPointer);
SET_InterleavedArrays(table, exec_InterleavedArrays);
SET_IsTexture(table, exec_IsTexture);
SET_NormalPointer(table, exec_NormalPointer);
SET_PopClientAttrib(table, exec_PopClientAttrib);
SET_PrioritizeTextures(table, save_PrioritizeTextures);
SET_PushClientAttrib(table, exec_PushClientAttrib);
SET_TexCoordPointer(table, exec_TexCoordPointer);
SET_TexSubImage1D(table, save_TexSubImage1D);
SET_TexSubImage2D(table, save_TexSubImage2D);
SET_VertexPointer(table, exec_VertexPointer);
/* GL 1.2 */
SET_CopyTexSubImage3D(table, save_CopyTexSubImage3D);
SET_TexImage3D(table, save_TexImage3D);
SET_TexSubImage3D(table, save_TexSubImage3D);
/* GL 2.0 */
SET_StencilFuncSeparate(table, save_StencilFuncSeparate);
SET_StencilMaskSeparate(table, save_StencilMaskSeparate);
SET_StencilOpSeparate(table, save_StencilOpSeparate);
/* ATI_separate_stencil */
SET_StencilFuncSeparateATI(table, save_StencilFuncSeparateATI);
/* GL_ARB_imaging */
/* Not all are supported */
SET_BlendColor(table, save_BlendColor);
SET_BlendEquation(table, save_BlendEquation);
SET_ColorSubTable(table, save_ColorSubTable);
SET_ColorTable(table, save_ColorTable);
SET_ColorTableParameterfv(table, save_ColorTableParameterfv);
SET_ColorTableParameteriv(table, save_ColorTableParameteriv);
SET_ConvolutionFilter1D(table, save_ConvolutionFilter1D);
SET_ConvolutionFilter2D(table, save_ConvolutionFilter2D);
SET_ConvolutionParameterf(table, save_ConvolutionParameterf);
SET_ConvolutionParameterfv(table, save_ConvolutionParameterfv);
SET_ConvolutionParameteri(table, save_ConvolutionParameteri);
SET_ConvolutionParameteriv(table, save_ConvolutionParameteriv);
SET_CopyColorSubTable(table, save_CopyColorSubTable);
SET_CopyColorTable(table, save_CopyColorTable);
SET_CopyConvolutionFilter1D(table, exec_CopyConvolutionFilter1D);
SET_CopyConvolutionFilter2D(table, exec_CopyConvolutionFilter2D);
SET_GetColorTable(table, exec_GetColorTable);
SET_GetColorTableParameterfv(table, exec_GetColorTableParameterfv);
SET_GetColorTableParameteriv(table, exec_GetColorTableParameteriv);
SET_GetConvolutionFilter(table, exec_GetConvolutionFilter);
SET_GetConvolutionParameterfv(table, exec_GetConvolutionParameterfv);
SET_GetConvolutionParameteriv(table, exec_GetConvolutionParameteriv);
SET_GetHistogram(table, exec_GetHistogram);
SET_GetHistogramParameterfv(table, exec_GetHistogramParameterfv);
SET_GetHistogramParameteriv(table, exec_GetHistogramParameteriv);
SET_GetMinmax(table, exec_GetMinmax);
SET_GetMinmaxParameterfv(table, exec_GetMinmaxParameterfv);
SET_GetMinmaxParameteriv(table, exec_GetMinmaxParameteriv);
SET_GetSeparableFilter(table, exec_GetSeparableFilter);
SET_Histogram(table, save_Histogram);
SET_Minmax(table, save_Minmax);
SET_ResetHistogram(table, save_ResetHistogram);
SET_ResetMinmax(table, save_ResetMinmax);
SET_SeparableFilter2D(table, exec_SeparableFilter2D);
/* 2. GL_EXT_blend_color */
#if 0
SET_BlendColorEXT(table, save_BlendColorEXT);
#endif
/* 3. GL_EXT_polygon_offset */
SET_PolygonOffsetEXT(table, save_PolygonOffsetEXT);
/* 6. GL_EXT_texture3d */
#if 0
SET_CopyTexSubImage3DEXT(table, save_CopyTexSubImage3D);
SET_TexImage3DEXT(table, save_TexImage3DEXT);
SET_TexSubImage3DEXT(table, save_TexSubImage3D);
#endif
/* 14. GL_SGI_color_table */
#if 0
SET_ColorTableSGI(table, save_ColorTable);
SET_ColorSubTableSGI(table, save_ColorSubTable);
SET_GetColorTableSGI(table, exec_GetColorTable);
SET_GetColorTableParameterfvSGI(table, exec_GetColorTableParameterfv);
SET_GetColorTableParameterivSGI(table, exec_GetColorTableParameteriv);
#endif
/* 30. GL_EXT_vertex_array */
SET_ColorPointerEXT(table, exec_ColorPointerEXT);
SET_EdgeFlagPointerEXT(table, exec_EdgeFlagPointerEXT);
SET_IndexPointerEXT(table, exec_IndexPointerEXT);
SET_NormalPointerEXT(table, exec_NormalPointerEXT);
SET_TexCoordPointerEXT(table, exec_TexCoordPointerEXT);
SET_VertexPointerEXT(table, exec_VertexPointerEXT);
/* 37. GL_EXT_blend_minmax */
#if 0
SET_BlendEquationEXT(table, save_BlendEquationEXT);
#endif
/* 54. GL_EXT_point_parameters */
SET_PointParameterfEXT(table, save_PointParameterfEXT);
SET_PointParameterfvEXT(table, save_PointParameterfvEXT);
/* 97. GL_EXT_compiled_vertex_array */
SET_LockArraysEXT(table, exec_LockArraysEXT);
SET_UnlockArraysEXT(table, exec_UnlockArraysEXT);
/* 145. GL_EXT_secondary_color */
SET_SecondaryColorPointerEXT(table, exec_SecondaryColorPointerEXT);
/* 148. GL_EXT_multi_draw_arrays */
SET_MultiDrawArraysEXT(table, exec_MultiDrawArraysEXT);
SET_MultiDrawElementsEXT(table, exec_MultiDrawElementsEXT);
/* 149. GL_EXT_fog_coord */
SET_FogCoordPointerEXT(table, exec_FogCoordPointerEXT);
/* 173. GL_EXT_blend_func_separate */
SET_BlendFuncSeparateEXT(table, save_BlendFuncSeparateEXT);
/* 196. GL_MESA_resize_buffers */
SET_ResizeBuffersMESA(table, _mesa_ResizeBuffersMESA);
/* 197. GL_MESA_window_pos */
SET_WindowPos2dMESA(table, save_WindowPos2dMESA);
SET_WindowPos2dvMESA(table, save_WindowPos2dvMESA);
SET_WindowPos2fMESA(table, save_WindowPos2fMESA);
SET_WindowPos2fvMESA(table, save_WindowPos2fvMESA);
SET_WindowPos2iMESA(table, save_WindowPos2iMESA);
SET_WindowPos2ivMESA(table, save_WindowPos2ivMESA);
SET_WindowPos2sMESA(table, save_WindowPos2sMESA);
SET_WindowPos2svMESA(table, save_WindowPos2svMESA);
SET_WindowPos3dMESA(table, save_WindowPos3dMESA);
SET_WindowPos3dvMESA(table, save_WindowPos3dvMESA);
SET_WindowPos3fMESA(table, save_WindowPos3fMESA);
SET_WindowPos3fvMESA(table, save_WindowPos3fvMESA);
SET_WindowPos3iMESA(table, save_WindowPos3iMESA);
SET_WindowPos3ivMESA(table, save_WindowPos3ivMESA);
SET_WindowPos3sMESA(table, save_WindowPos3sMESA);
SET_WindowPos3svMESA(table, save_WindowPos3svMESA);
SET_WindowPos4dMESA(table, save_WindowPos4dMESA);
SET_WindowPos4dvMESA(table, save_WindowPos4dvMESA);
SET_WindowPos4fMESA(table, save_WindowPos4fMESA);
SET_WindowPos4fvMESA(table, save_WindowPos4fvMESA);
SET_WindowPos4iMESA(table, save_WindowPos4iMESA);
SET_WindowPos4ivMESA(table, save_WindowPos4ivMESA);
SET_WindowPos4sMESA(table, save_WindowPos4sMESA);
SET_WindowPos4svMESA(table, save_WindowPos4svMESA);
/* 200. GL_IBM_multimode_draw_arrays */
SET_MultiModeDrawArraysIBM(table, exec_MultiModeDrawArraysIBM);
SET_MultiModeDrawElementsIBM(table, exec_MultiModeDrawElementsIBM);
#if FEATURE_NV_vertex_program
/* 233. GL_NV_vertex_program */
/* The following commands DO NOT go into display lists:
* AreProgramsResidentNV, IsProgramNV, GenProgramsNV, DeleteProgramsNV,
* VertexAttribPointerNV, GetProgram*, GetVertexAttrib*
*/
SET_BindProgramNV(table, save_BindProgramNV);
SET_DeleteProgramsNV(table, _mesa_DeletePrograms);
SET_ExecuteProgramNV(table, save_ExecuteProgramNV);
SET_GenProgramsNV(table, _mesa_GenPrograms);
SET_AreProgramsResidentNV(table, _mesa_AreProgramsResidentNV);
SET_RequestResidentProgramsNV(table, save_RequestResidentProgramsNV);
SET_GetProgramParameterfvNV(table, _mesa_GetProgramParameterfvNV);
SET_GetProgramParameterdvNV(table, _mesa_GetProgramParameterdvNV);
SET_GetProgramivNV(table, _mesa_GetProgramivNV);
SET_GetProgramStringNV(table, _mesa_GetProgramStringNV);
SET_GetTrackMatrixivNV(table, _mesa_GetTrackMatrixivNV);
SET_GetVertexAttribdvNV(table, _mesa_GetVertexAttribdvNV);
SET_GetVertexAttribfvNV(table, _mesa_GetVertexAttribfvNV);
SET_GetVertexAttribivNV(table, _mesa_GetVertexAttribivNV);
SET_GetVertexAttribPointervNV(table, _mesa_GetVertexAttribPointervNV);
SET_IsProgramNV(table, _mesa_IsProgramARB);
SET_LoadProgramNV(table, save_LoadProgramNV);
SET_ProgramEnvParameter4dARB(table, save_ProgramEnvParameter4dARB);
SET_ProgramEnvParameter4dvARB(table, save_ProgramEnvParameter4dvARB);
SET_ProgramEnvParameter4fARB(table, save_ProgramEnvParameter4fARB);
SET_ProgramEnvParameter4fvARB(table, save_ProgramEnvParameter4fvARB);
SET_ProgramParameters4dvNV(table, save_ProgramParameters4dvNV);
SET_ProgramParameters4fvNV(table, save_ProgramParameters4fvNV);
SET_TrackMatrixNV(table, save_TrackMatrixNV);
SET_VertexAttribPointerNV(table, _mesa_VertexAttribPointerNV);
#endif
/* 245. GL_ATI_fragment_shader */
#if FEATURE_ATI_fragment_shader
SET_BindFragmentShaderATI(table, save_BindFragmentShaderATI);
SET_SetFragmentShaderConstantATI(table, save_SetFragmentShaderConstantATI);
#endif
/* 282. GL_NV_fragment_program */
#if FEATURE_NV_fragment_program
SET_ProgramNamedParameter4fNV(table, save_ProgramNamedParameter4fNV);
SET_ProgramNamedParameter4dNV(table, save_ProgramNamedParameter4dNV);
SET_ProgramNamedParameter4fvNV(table, save_ProgramNamedParameter4fvNV);
SET_ProgramNamedParameter4dvNV(table, save_ProgramNamedParameter4dvNV);
SET_GetProgramNamedParameterfvNV(table,
_mesa_GetProgramNamedParameterfvNV);
SET_GetProgramNamedParameterdvNV(table,
_mesa_GetProgramNamedParameterdvNV);
SET_ProgramLocalParameter4dARB(table, save_ProgramLocalParameter4dARB);
SET_ProgramLocalParameter4dvARB(table, save_ProgramLocalParameter4dvARB);
SET_ProgramLocalParameter4fARB(table, save_ProgramLocalParameter4fARB);
SET_ProgramLocalParameter4fvARB(table, save_ProgramLocalParameter4fvARB);
SET_GetProgramLocalParameterdvARB(table,
_mesa_GetProgramLocalParameterdvARB);
SET_GetProgramLocalParameterfvARB(table,
_mesa_GetProgramLocalParameterfvARB);
#endif
/* 262. GL_NV_point_sprite */
SET_PointParameteriNV(table, save_PointParameteriNV);
SET_PointParameterivNV(table, save_PointParameterivNV);
/* 268. GL_EXT_stencil_two_side */
SET_ActiveStencilFaceEXT(table, save_ActiveStencilFaceEXT);
/* 273. GL_APPLE_vertex_array_object */
SET_BindVertexArrayAPPLE(table, _mesa_BindVertexArrayAPPLE);
SET_DeleteVertexArraysAPPLE(table, _mesa_DeleteVertexArraysAPPLE);
SET_GenVertexArraysAPPLE(table, _mesa_GenVertexArraysAPPLE);
SET_IsVertexArrayAPPLE(table, _mesa_IsVertexArrayAPPLE);
/* ???. GL_EXT_depth_bounds_test */
SET_DepthBoundsEXT(table, save_DepthBoundsEXT);
/* ARB 1. GL_ARB_multitexture */
SET_ActiveTextureARB(table, save_ActiveTextureARB);
SET_ClientActiveTextureARB(table, exec_ClientActiveTextureARB);
/* ARB 3. GL_ARB_transpose_matrix */
SET_LoadTransposeMatrixdARB(table, save_LoadTransposeMatrixdARB);
SET_LoadTransposeMatrixfARB(table, save_LoadTransposeMatrixfARB);
SET_MultTransposeMatrixdARB(table, save_MultTransposeMatrixdARB);
SET_MultTransposeMatrixfARB(table, save_MultTransposeMatrixfARB);
/* ARB 5. GL_ARB_multisample */
SET_SampleCoverageARB(table, save_SampleCoverageARB);
/* ARB 12. GL_ARB_texture_compression */
SET_CompressedTexImage3DARB(table, save_CompressedTexImage3DARB);
SET_CompressedTexImage2DARB(table, save_CompressedTexImage2DARB);
SET_CompressedTexImage1DARB(table, save_CompressedTexImage1DARB);
SET_CompressedTexSubImage3DARB(table, save_CompressedTexSubImage3DARB);
SET_CompressedTexSubImage2DARB(table, save_CompressedTexSubImage2DARB);
SET_CompressedTexSubImage1DARB(table, save_CompressedTexSubImage1DARB);
SET_GetCompressedTexImageARB(table, exec_GetCompressedTexImageARB);
/* ARB 14. GL_ARB_point_parameters */
/* aliased with EXT_point_parameters functions */
/* ARB 25. GL_ARB_window_pos */
/* aliased with MESA_window_pos functions */
/* ARB 26. GL_ARB_vertex_program */
/* ARB 27. GL_ARB_fragment_program */
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
/* glVertexAttrib* functions alias the NV ones, handled elsewhere */
SET_VertexAttribPointerARB(table, _mesa_VertexAttribPointerARB);
SET_EnableVertexAttribArrayARB(table, _mesa_EnableVertexAttribArrayARB);
SET_DisableVertexAttribArrayARB(table, _mesa_DisableVertexAttribArrayARB);
SET_ProgramStringARB(table, save_ProgramStringARB);
SET_BindProgramNV(table, save_BindProgramNV);
SET_DeleteProgramsNV(table, _mesa_DeletePrograms);
SET_GenProgramsNV(table, _mesa_GenPrograms);
SET_IsProgramNV(table, _mesa_IsProgramARB);
SET_GetVertexAttribdvNV(table, _mesa_GetVertexAttribdvNV);
SET_GetVertexAttribfvNV(table, _mesa_GetVertexAttribfvNV);
SET_GetVertexAttribivNV(table, _mesa_GetVertexAttribivNV);
SET_GetVertexAttribPointervNV(table, _mesa_GetVertexAttribPointervNV);
SET_ProgramEnvParameter4dARB(table, save_ProgramEnvParameter4dARB);
SET_ProgramEnvParameter4dvARB(table, save_ProgramEnvParameter4dvARB);
SET_ProgramEnvParameter4fARB(table, save_ProgramEnvParameter4fARB);
SET_ProgramEnvParameter4fvARB(table, save_ProgramEnvParameter4fvARB);
SET_ProgramLocalParameter4dARB(table, save_ProgramLocalParameter4dARB);
SET_ProgramLocalParameter4dvARB(table, save_ProgramLocalParameter4dvARB);
SET_ProgramLocalParameter4fARB(table, save_ProgramLocalParameter4fARB);
SET_ProgramLocalParameter4fvARB(table, save_ProgramLocalParameter4fvARB);
SET_GetProgramEnvParameterdvARB(table, _mesa_GetProgramEnvParameterdvARB);
SET_GetProgramEnvParameterfvARB(table, _mesa_GetProgramEnvParameterfvARB);
SET_GetProgramLocalParameterdvARB(table,
_mesa_GetProgramLocalParameterdvARB);
SET_GetProgramLocalParameterfvARB(table,
_mesa_GetProgramLocalParameterfvARB);
SET_GetProgramivARB(table, _mesa_GetProgramivARB);
SET_GetProgramStringARB(table, _mesa_GetProgramStringARB);
#endif
/* ARB 28. GL_ARB_vertex_buffer_object */
#if FEATURE_ARB_vertex_buffer_object
/* None of the extension's functions get compiled */
SET_BindBufferARB(table, _mesa_BindBufferARB);
SET_BufferDataARB(table, _mesa_BufferDataARB);
SET_BufferSubDataARB(table, _mesa_BufferSubDataARB);
SET_DeleteBuffersARB(table, _mesa_DeleteBuffersARB);
SET_GenBuffersARB(table, _mesa_GenBuffersARB);
SET_GetBufferParameterivARB(table, _mesa_GetBufferParameterivARB);
SET_GetBufferPointervARB(table, _mesa_GetBufferPointervARB);
SET_GetBufferSubDataARB(table, _mesa_GetBufferSubDataARB);
SET_IsBufferARB(table, _mesa_IsBufferARB);
SET_MapBufferARB(table, _mesa_MapBufferARB);
SET_UnmapBufferARB(table, _mesa_UnmapBufferARB);
#endif
#if FEATURE_ARB_occlusion_query
SET_BeginQueryARB(table, save_BeginQueryARB);
SET_EndQueryARB(table, save_EndQueryARB);
SET_GenQueriesARB(table, _mesa_GenQueriesARB);
SET_DeleteQueriesARB(table, _mesa_DeleteQueriesARB);
SET_IsQueryARB(table, _mesa_IsQueryARB);
SET_GetQueryivARB(table, _mesa_GetQueryivARB);
SET_GetQueryObjectivARB(table, _mesa_GetQueryObjectivARB);
SET_GetQueryObjectuivARB(table, _mesa_GetQueryObjectuivARB);
#endif
SET_DrawBuffersARB(table, save_DrawBuffersARB);
#if FEATURE_EXT_framebuffer_blit
SET_BlitFramebufferEXT(table, save_BlitFramebufferEXT);
#endif
/* ARB 30/31/32. GL_ARB_shader_objects, GL_ARB_vertex/fragment_shader */
SET_BindAttribLocationARB(table, exec_BindAttribLocationARB);
SET_GetAttribLocationARB(table, exec_GetAttribLocationARB);
/* XXX additional functions need to be implemented here! */
/* 299. GL_EXT_blend_equation_separate */
SET_BlendEquationSeparateEXT(table, save_BlendEquationSeparateEXT);
/* GL_EXT_gpu_program_parmaeters */
#if FEATURE_ARB_vertex_program || FEATURE_ARB_fragment_program
SET_ProgramEnvParameters4fvEXT(table, save_ProgramEnvParameters4fvEXT);
SET_ProgramLocalParameters4fvEXT(table, save_ProgramLocalParameters4fvEXT);
#endif
}
static const char *
enum_string(GLenum k)
{
return _mesa_lookup_enum_by_nr(k);
}
/**
* Print the commands in a display list. For debugging only.
* TODO: many commands aren't handled yet.
*/
static void GLAPIENTRY
print_list(GLcontext *ctx, GLuint list)
{
struct mesa_display_list *dlist;
Node *n;
GLboolean done;
if (!islist(ctx, list)) {
_mesa_printf("%u is not a display list ID\n", list);
return;
}
dlist = lookup_list(ctx, list);
if (!dlist)
return;
n = dlist->node;
_mesa_printf("START-LIST %u, address %p\n", list, (void *) n);
done = n ? GL_FALSE : GL_TRUE;
while (!done) {
OpCode opcode = n[0].opcode;
GLint i = (GLint) n[0].opcode - (GLint) OPCODE_EXT_0;
if (i >= 0 && i < (GLint) ctx->ListExt.NumOpcodes) {
/* this is a driver-extended opcode */
ctx->ListExt.Opcode[i].Print(ctx, &n[1]);
n += ctx->ListExt.Opcode[i].Size;
}
else {
switch (opcode) {
case OPCODE_ACCUM:
_mesa_printf("Accum %s %g\n", enum_string(n[1].e), n[2].f);
break;
case OPCODE_BITMAP:
_mesa_printf("Bitmap %d %d %g %g %g %g %p\n", n[1].i, n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f, (void *) n[7].data);
break;
case OPCODE_CALL_LIST:
_mesa_printf("CallList %d\n", (int) n[1].ui);
break;
case OPCODE_CALL_LIST_OFFSET:
_mesa_printf("CallList %d + offset %u = %u\n", (int) n[1].ui,
ctx->List.ListBase, ctx->List.ListBase + n[1].ui);
break;
case OPCODE_COLOR_TABLE_PARAMETER_FV:
_mesa_printf("ColorTableParameterfv %s %s %f %f %f %f\n",
enum_string(n[1].e), enum_string(n[2].e),
n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_COLOR_TABLE_PARAMETER_IV:
_mesa_printf("ColorTableParameteriv %s %s %d %d %d %d\n",
enum_string(n[1].e), enum_string(n[2].e),
n[3].i, n[4].i, n[5].i, n[6].i);
break;
case OPCODE_DISABLE:
_mesa_printf("Disable %s\n", enum_string(n[1].e));
break;
case OPCODE_ENABLE:
_mesa_printf("Enable %s\n", enum_string(n[1].e));
break;
case OPCODE_FRUSTUM:
_mesa_printf("Frustum %g %g %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_LINE_STIPPLE:
_mesa_printf("LineStipple %d %x\n", n[1].i, (int) n[2].us);
break;
case OPCODE_LOAD_IDENTITY:
_mesa_printf("LoadIdentity\n");
break;
case OPCODE_LOAD_MATRIX:
_mesa_printf("LoadMatrix\n");
_mesa_printf(" %8f %8f %8f %8f\n",
n[1].f, n[5].f, n[9].f, n[13].f);
_mesa_printf(" %8f %8f %8f %8f\n",
n[2].f, n[6].f, n[10].f, n[14].f);
_mesa_printf(" %8f %8f %8f %8f\n",
n[3].f, n[7].f, n[11].f, n[15].f);
_mesa_printf(" %8f %8f %8f %8f\n",
n[4].f, n[8].f, n[12].f, n[16].f);
break;
case OPCODE_MULT_MATRIX:
_mesa_printf("MultMatrix (or Rotate)\n");
_mesa_printf(" %8f %8f %8f %8f\n",
n[1].f, n[5].f, n[9].f, n[13].f);
_mesa_printf(" %8f %8f %8f %8f\n",
n[2].f, n[6].f, n[10].f, n[14].f);
_mesa_printf(" %8f %8f %8f %8f\n",
n[3].f, n[7].f, n[11].f, n[15].f);
_mesa_printf(" %8f %8f %8f %8f\n",
n[4].f, n[8].f, n[12].f, n[16].f);
break;
case OPCODE_ORTHO:
_mesa_printf("Ortho %g %g %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_POP_ATTRIB:
_mesa_printf("PopAttrib\n");
break;
case OPCODE_POP_MATRIX:
_mesa_printf("PopMatrix\n");
break;
case OPCODE_POP_NAME:
_mesa_printf("PopName\n");
break;
case OPCODE_PUSH_ATTRIB:
_mesa_printf("PushAttrib %x\n", n[1].bf);
break;
case OPCODE_PUSH_MATRIX:
_mesa_printf("PushMatrix\n");
break;
case OPCODE_PUSH_NAME:
_mesa_printf("PushName %d\n", (int) n[1].ui);
break;
case OPCODE_RASTER_POS:
_mesa_printf("RasterPos %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ROTATE:
_mesa_printf("Rotate %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_SCALE:
_mesa_printf("Scale %g %g %g\n", n[1].f, n[2].f, n[3].f);
break;
case OPCODE_TRANSLATE:
_mesa_printf("Translate %g %g %g\n", n[1].f, n[2].f, n[3].f);
break;
case OPCODE_BIND_TEXTURE:
_mesa_printf("BindTexture %s %d\n",
_mesa_lookup_enum_by_nr(n[1].ui), n[2].ui);
break;
case OPCODE_SHADE_MODEL:
_mesa_printf("ShadeModel %s\n", _mesa_lookup_enum_by_nr(n[1].ui));
break;
case OPCODE_MAP1:
_mesa_printf("Map1 %s %.3f %.3f %d %d\n",
_mesa_lookup_enum_by_nr(n[1].ui),
n[2].f, n[3].f, n[4].i, n[5].i);
break;
case OPCODE_MAP2:
_mesa_printf("Map2 %s %.3f %.3f %.3f %.3f %d %d %d %d\n",
_mesa_lookup_enum_by_nr(n[1].ui),
n[2].f, n[3].f, n[4].f, n[5].f,
n[6].i, n[7].i, n[8].i, n[9].i);
break;
case OPCODE_MAPGRID1:
_mesa_printf("MapGrid1 %d %.3f %.3f\n", n[1].i, n[2].f, n[3].f);
break;
case OPCODE_MAPGRID2:
_mesa_printf("MapGrid2 %d %.3f %.3f, %d %.3f %.3f\n",
n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f);
break;
case OPCODE_EVALMESH1:
_mesa_printf("EvalMesh1 %d %d\n", n[1].i, n[2].i);
break;
case OPCODE_EVALMESH2:
_mesa_printf("EvalMesh2 %d %d %d %d\n",
n[1].i, n[2].i, n[3].i, n[4].i);
break;
case OPCODE_ATTR_1F_NV:
_mesa_printf("ATTR_1F_NV attr %d: %f\n", n[1].i, n[2].f);
break;
case OPCODE_ATTR_2F_NV:
_mesa_printf("ATTR_2F_NV attr %d: %f %f\n",
n[1].i, n[2].f, n[3].f);
break;
case OPCODE_ATTR_3F_NV:
_mesa_printf("ATTR_3F_NV attr %d: %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ATTR_4F_NV:
_mesa_printf("ATTR_4F_NV attr %d: %f %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f, n[5].f);
break;
case OPCODE_ATTR_1F_ARB:
_mesa_printf("ATTR_1F_ARB attr %d: %f\n", n[1].i, n[2].f);
break;
case OPCODE_ATTR_2F_ARB:
_mesa_printf("ATTR_2F_ARB attr %d: %f %f\n",
n[1].i, n[2].f, n[3].f);
break;
case OPCODE_ATTR_3F_ARB:
_mesa_printf("ATTR_3F_ARB attr %d: %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ATTR_4F_ARB:
_mesa_printf("ATTR_4F_ARB attr %d: %f %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f, n[5].f);
break;
case OPCODE_MATERIAL:
_mesa_printf("MATERIAL %x %x: %f %f %f %f\n",
n[1].i, n[2].i, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_BEGIN:
_mesa_printf("BEGIN %x\n", n[1].i);
break;
case OPCODE_END:
_mesa_printf("END\n");
break;
case OPCODE_RECTF:
_mesa_printf("RECTF %f %f %f %f\n", n[1].f, n[2].f, n[3].f,
n[4].f);
break;
case OPCODE_EVAL_C1:
_mesa_printf("EVAL_C1 %f\n", n[1].f);
break;
case OPCODE_EVAL_C2:
_mesa_printf("EVAL_C2 %f %f\n", n[1].f, n[2].f);
break;
case OPCODE_EVAL_P1:
_mesa_printf("EVAL_P1 %d\n", n[1].i);
break;
case OPCODE_EVAL_P2:
_mesa_printf("EVAL_P2 %d %d\n", n[1].i, n[2].i);
break;
/*
* meta opcodes/commands
*/
case OPCODE_ERROR:
_mesa_printf("Error: %s %s\n",
enum_string(n[1].e), (const char *) n[2].data);
break;
case OPCODE_CONTINUE:
_mesa_printf("DISPLAY-LIST-CONTINUE\n");
n = (Node *) n[1].next;
break;
case OPCODE_END_OF_LIST:
_mesa_printf("END-LIST %u\n", list);
done = GL_TRUE;
break;
default:
if (opcode < 0 || opcode > OPCODE_END_OF_LIST) {
_mesa_printf
("ERROR IN DISPLAY LIST: opcode = %d, address = %p\n",
opcode, (void *) n);
return;
}
else {
_mesa_printf("command %d, %u operands\n", opcode,
InstSize[opcode]);
}
}
/* increment n to point to next compiled command */
if (opcode != OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
}
}
/**
* Clients may call this function to help debug display list problems.
* This function is _ONLY_FOR_DEBUGGING_PURPOSES_. It may be removed,
* changed, or break in the future without notice.
*/
void
mesa_print_display_list(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
print_list(ctx, list);
}
/**********************************************************************/
/***** Initialization *****/
/**********************************************************************/
void
_mesa_save_vtxfmt_init(GLvertexformat * vfmt)
{
vfmt->ArrayElement = _ae_loopback_array_elt; /* generic helper */
vfmt->Begin = save_Begin;
vfmt->CallList = _mesa_save_CallList;
vfmt->CallLists = _mesa_save_CallLists;
vfmt->Color3f = save_Color3f;
vfmt->Color3fv = save_Color3fv;
vfmt->Color4f = save_Color4f;
vfmt->Color4fv = save_Color4fv;
vfmt->EdgeFlag = save_EdgeFlag;
vfmt->End = save_End;
vfmt->EvalCoord1f = save_EvalCoord1f;
vfmt->EvalCoord1fv = save_EvalCoord1fv;
vfmt->EvalCoord2f = save_EvalCoord2f;
vfmt->EvalCoord2fv = save_EvalCoord2fv;
vfmt->EvalPoint1 = save_EvalPoint1;
vfmt->EvalPoint2 = save_EvalPoint2;
vfmt->FogCoordfEXT = save_FogCoordfEXT;
vfmt->FogCoordfvEXT = save_FogCoordfvEXT;
vfmt->Indexf = save_Indexf;
vfmt->Indexfv = save_Indexfv;
vfmt->Materialfv = save_Materialfv;
vfmt->MultiTexCoord1fARB = save_MultiTexCoord1f;
vfmt->MultiTexCoord1fvARB = save_MultiTexCoord1fv;
vfmt->MultiTexCoord2fARB = save_MultiTexCoord2f;
vfmt->MultiTexCoord2fvARB = save_MultiTexCoord2fv;
vfmt->MultiTexCoord3fARB = save_MultiTexCoord3f;
vfmt->MultiTexCoord3fvARB = save_MultiTexCoord3fv;
vfmt->MultiTexCoord4fARB = save_MultiTexCoord4f;
vfmt->MultiTexCoord4fvARB = save_MultiTexCoord4fv;
vfmt->Normal3f = save_Normal3f;
vfmt->Normal3fv = save_Normal3fv;
vfmt->SecondaryColor3fEXT = save_SecondaryColor3fEXT;
vfmt->SecondaryColor3fvEXT = save_SecondaryColor3fvEXT;
vfmt->TexCoord1f = save_TexCoord1f;
vfmt->TexCoord1fv = save_TexCoord1fv;
vfmt->TexCoord2f = save_TexCoord2f;
vfmt->TexCoord2fv = save_TexCoord2fv;
vfmt->TexCoord3f = save_TexCoord3f;
vfmt->TexCoord3fv = save_TexCoord3fv;
vfmt->TexCoord4f = save_TexCoord4f;
vfmt->TexCoord4fv = save_TexCoord4fv;
vfmt->Vertex2f = save_Vertex2f;
vfmt->Vertex2fv = save_Vertex2fv;
vfmt->Vertex3f = save_Vertex3f;
vfmt->Vertex3fv = save_Vertex3fv;
vfmt->Vertex4f = save_Vertex4f;
vfmt->Vertex4fv = save_Vertex4fv;
vfmt->VertexAttrib1fNV = save_VertexAttrib1fNV;
vfmt->VertexAttrib1fvNV = save_VertexAttrib1fvNV;
vfmt->VertexAttrib2fNV = save_VertexAttrib2fNV;
vfmt->VertexAttrib2fvNV = save_VertexAttrib2fvNV;
vfmt->VertexAttrib3fNV = save_VertexAttrib3fNV;
vfmt->VertexAttrib3fvNV = save_VertexAttrib3fvNV;
vfmt->VertexAttrib4fNV = save_VertexAttrib4fNV;
vfmt->VertexAttrib4fvNV = save_VertexAttrib4fvNV;
vfmt->VertexAttrib1fARB = save_VertexAttrib1fARB;
vfmt->VertexAttrib1fvARB = save_VertexAttrib1fvARB;
vfmt->VertexAttrib2fARB = save_VertexAttrib2fARB;
vfmt->VertexAttrib2fvARB = save_VertexAttrib2fvARB;
vfmt->VertexAttrib3fARB = save_VertexAttrib3fARB;
vfmt->VertexAttrib3fvARB = save_VertexAttrib3fvARB;
vfmt->VertexAttrib4fARB = save_VertexAttrib4fARB;
vfmt->VertexAttrib4fvARB = save_VertexAttrib4fvARB;
vfmt->EvalMesh1 = _mesa_save_EvalMesh1;
vfmt->EvalMesh2 = _mesa_save_EvalMesh2;
vfmt->Rectf = save_Rectf;
/* The driver is required to implement these as
* 1) They can probably do a better job.
* 2) A lot of new mechanisms would have to be added to this module
* to support it. That code would probably never get used,
* because of (1).
*/
#if 0
vfmt->DrawArrays = 0;
vfmt->DrawElements = 0;
vfmt->DrawRangeElements = 0;
#endif
}
/**
* Initialize display list state for given context.
*/
void
_mesa_init_display_list(GLcontext *ctx)
{
static GLboolean tableInitialized = GL_FALSE;
/* zero-out the instruction size table, just once */
if (!tableInitialized) {
_mesa_bzero(InstSize, sizeof(InstSize));
tableInitialized = GL_TRUE;
}
/* Display list */
ctx->ListState.CallDepth = 0;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->ListState.CurrentListPtr = NULL;
ctx->ListState.CurrentBlock = NULL;
ctx->ListState.CurrentListNum = 0;
ctx->ListState.CurrentPos = 0;
/* Display List group */
ctx->List.ListBase = 0;
_mesa_save_vtxfmt_init(&ctx->ListState.ListVtxfmt);
}