blob: 94625b9f9167be84526503273d6fd5ae70716587 [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 7.0
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "imports.h"
#include "context.h"
#include "enums.h"
#include "light.h"
#include "macros.h"
#include "simple_list.h"
#include "mtypes.h"
#include "math/m_matrix.h"
void GLAPIENTRY
_mesa_ShadeModel( GLenum mode )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glShadeModel %s\n", _mesa_lookup_enum_by_nr(mode));
if (mode != GL_FLAT && mode != GL_SMOOTH) {
_mesa_error(ctx, GL_INVALID_ENUM, "glShadeModel");
return;
}
if (ctx->Light.ShadeModel == mode)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.ShadeModel = mode;
if (mode == GL_FLAT)
ctx->_TriangleCaps |= DD_FLATSHADE;
else
ctx->_TriangleCaps &= ~DD_FLATSHADE;
if (ctx->Driver.ShadeModel)
ctx->Driver.ShadeModel( ctx, mode );
}
/**
* Helper function called by _mesa_Lightfv and _mesa_PopAttrib to set
* per-light state.
* For GL_POSITION and GL_SPOT_DIRECTION the params position/direction
* will have already been transformed by the modelview matrix!
* Also, all error checking should have already been done.
*/
void
_mesa_light(GLcontext *ctx, GLuint lnum, GLenum pname, const GLfloat *params)
{
struct gl_light *light;
ASSERT(lnum < MAX_LIGHTS);
light = &ctx->Light.Light[lnum];
switch (pname) {
case GL_AMBIENT:
if (TEST_EQ_4V(light->Ambient, params))
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
COPY_4V( light->Ambient, params );
break;
case GL_DIFFUSE:
if (TEST_EQ_4V(light->Diffuse, params))
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
COPY_4V( light->Diffuse, params );
break;
case GL_SPECULAR:
if (TEST_EQ_4V(light->Specular, params))
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
COPY_4V( light->Specular, params );
break;
case GL_POSITION:
/* NOTE: position has already been transformed by ModelView! */
if (TEST_EQ_4V(light->EyePosition, params))
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
COPY_4V(light->EyePosition, params);
if (light->EyePosition[3] != 0.0F)
light->_Flags |= LIGHT_POSITIONAL;
else
light->_Flags &= ~LIGHT_POSITIONAL;
break;
case GL_SPOT_DIRECTION:
/* NOTE: Direction already transformed by inverse ModelView! */
if (TEST_EQ_3V(light->EyeDirection, params))
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
COPY_3V(light->EyeDirection, params);
break;
case GL_SPOT_EXPONENT:
ASSERT(params[0] >= 0.0);
ASSERT(params[0] <= ctx->Const.MaxSpotExponent);
if (light->SpotExponent == params[0])
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
light->SpotExponent = params[0];
_mesa_invalidate_spot_exp_table(light);
break;
case GL_SPOT_CUTOFF:
ASSERT(params[0] == 180.0 || (params[0] >= 0.0 && params[0] <= 90.0));
if (light->SpotCutoff == params[0])
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
light->SpotCutoff = params[0];
light->_CosCutoffNeg = (GLfloat) (_mesa_cos(light->SpotCutoff * DEG2RAD));
if (light->_CosCutoffNeg < 0)
light->_CosCutoff = 0;
else
light->_CosCutoff = light->_CosCutoffNeg;
if (light->SpotCutoff != 180.0F)
light->_Flags |= LIGHT_SPOT;
else
light->_Flags &= ~LIGHT_SPOT;
break;
case GL_CONSTANT_ATTENUATION:
ASSERT(params[0] >= 0.0);
if (light->ConstantAttenuation == params[0])
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
light->ConstantAttenuation = params[0];
break;
case GL_LINEAR_ATTENUATION:
ASSERT(params[0] >= 0.0);
if (light->LinearAttenuation == params[0])
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
light->LinearAttenuation = params[0];
break;
case GL_QUADRATIC_ATTENUATION:
ASSERT(params[0] >= 0.0);
if (light->QuadraticAttenuation == params[0])
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
light->QuadraticAttenuation = params[0];
break;
default:
_mesa_problem(ctx, "Unexpected pname in _mesa_light()");
return;
}
if (ctx->Driver.Lightfv)
ctx->Driver.Lightfv( ctx, GL_LIGHT0 + lnum, pname, params );
}
void GLAPIENTRY
_mesa_Lightf( GLenum light, GLenum pname, GLfloat param )
{
_mesa_Lightfv( light, pname, &param );
}
void GLAPIENTRY
_mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params )
{
GET_CURRENT_CONTEXT(ctx);
GLint i = (GLint) (light - GL_LIGHT0);
GLfloat temp[4];
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (i < 0 || i >= (GLint) ctx->Const.MaxLights) {
_mesa_error( ctx, GL_INVALID_ENUM, "glLight(light=0x%x)", light );
return;
}
/* do particular error checks, transformations */
switch (pname) {
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
/* nothing */
break;
case GL_POSITION:
/* transform position by ModelView matrix */
TRANSFORM_POINT(temp, ctx->ModelviewMatrixStack.Top->m, params);
params = temp;
break;
case GL_SPOT_DIRECTION:
/* transform direction by inverse modelview */
if (_math_matrix_is_dirty(ctx->ModelviewMatrixStack.Top)) {
_math_matrix_analyse(ctx->ModelviewMatrixStack.Top);
}
TRANSFORM_NORMAL(temp, params, ctx->ModelviewMatrixStack.Top->inv);
params = temp;
break;
case GL_SPOT_EXPONENT:
if (params[0] < 0.0 || params[0] > ctx->Const.MaxSpotExponent) {
_mesa_error(ctx, GL_INVALID_VALUE, "glLight");
return;
}
break;
case GL_SPOT_CUTOFF:
if ((params[0] < 0.0 || params[0] > 90.0) && params[0] != 180.0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glLight");
return;
}
break;
case GL_CONSTANT_ATTENUATION:
if (params[0] < 0.0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glLight");
return;
}
break;
case GL_LINEAR_ATTENUATION:
if (params[0] < 0.0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glLight");
return;
}
break;
case GL_QUADRATIC_ATTENUATION:
if (params[0] < 0.0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glLight");
return;
}
break;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glLight(pname=0x%x)", pname);
return;
}
_mesa_light(ctx, i, pname, params);
}
void GLAPIENTRY
_mesa_Lighti( GLenum light, GLenum pname, GLint param )
{
_mesa_Lightiv( light, pname, &param );
}
void GLAPIENTRY
_mesa_Lightiv( GLenum light, GLenum pname, const GLint *params )
{
GLfloat fparam[4];
switch (pname) {
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
fparam[0] = INT_TO_FLOAT( params[0] );
fparam[1] = INT_TO_FLOAT( params[1] );
fparam[2] = INT_TO_FLOAT( params[2] );
fparam[3] = INT_TO_FLOAT( params[3] );
break;
case GL_POSITION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
fparam[3] = (GLfloat) params[3];
break;
case GL_SPOT_DIRECTION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
break;
case GL_SPOT_EXPONENT:
case GL_SPOT_CUTOFF:
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
fparam[0] = (GLfloat) params[0];
break;
default:
/* error will be caught later in gl_Lightfv */
;
}
_mesa_Lightfv( light, pname, fparam );
}
void GLAPIENTRY
_mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params )
{
GET_CURRENT_CONTEXT(ctx);
GLint l = (GLint) (light - GL_LIGHT0);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
return;
}
switch (pname) {
case GL_AMBIENT:
COPY_4V( params, ctx->Light.Light[l].Ambient );
break;
case GL_DIFFUSE:
COPY_4V( params, ctx->Light.Light[l].Diffuse );
break;
case GL_SPECULAR:
COPY_4V( params, ctx->Light.Light[l].Specular );
break;
case GL_POSITION:
COPY_4V( params, ctx->Light.Light[l].EyePosition );
break;
case GL_SPOT_DIRECTION:
COPY_3V( params, ctx->Light.Light[l].EyeDirection );
break;
case GL_SPOT_EXPONENT:
params[0] = ctx->Light.Light[l].SpotExponent;
break;
case GL_SPOT_CUTOFF:
params[0] = ctx->Light.Light[l].SpotCutoff;
break;
case GL_CONSTANT_ATTENUATION:
params[0] = ctx->Light.Light[l].ConstantAttenuation;
break;
case GL_LINEAR_ATTENUATION:
params[0] = ctx->Light.Light[l].LinearAttenuation;
break;
case GL_QUADRATIC_ATTENUATION:
params[0] = ctx->Light.Light[l].QuadraticAttenuation;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
break;
}
}
void GLAPIENTRY
_mesa_GetLightiv( GLenum light, GLenum pname, GLint *params )
{
GET_CURRENT_CONTEXT(ctx);
GLint l = (GLint) (light - GL_LIGHT0);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
return;
}
switch (pname) {
case GL_AMBIENT:
params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]);
params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]);
params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]);
params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]);
break;
case GL_DIFFUSE:
params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]);
params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]);
params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]);
params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]);
break;
case GL_SPECULAR:
params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]);
params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]);
params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]);
params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]);
break;
case GL_POSITION:
params[0] = (GLint) ctx->Light.Light[l].EyePosition[0];
params[1] = (GLint) ctx->Light.Light[l].EyePosition[1];
params[2] = (GLint) ctx->Light.Light[l].EyePosition[2];
params[3] = (GLint) ctx->Light.Light[l].EyePosition[3];
break;
case GL_SPOT_DIRECTION:
params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0];
params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1];
params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2];
break;
case GL_SPOT_EXPONENT:
params[0] = (GLint) ctx->Light.Light[l].SpotExponent;
break;
case GL_SPOT_CUTOFF:
params[0] = (GLint) ctx->Light.Light[l].SpotCutoff;
break;
case GL_CONSTANT_ATTENUATION:
params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation;
break;
case GL_LINEAR_ATTENUATION:
params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation;
break;
case GL_QUADRATIC_ATTENUATION:
params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
break;
}
}
/**********************************************************************/
/*** Light Model ***/
/**********************************************************************/
void GLAPIENTRY
_mesa_LightModelfv( GLenum pname, const GLfloat *params )
{
GLenum newenum;
GLboolean newbool;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
if (TEST_EQ_4V( ctx->Light.Model.Ambient, params ))
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
COPY_4V( ctx->Light.Model.Ambient, params );
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
newbool = (params[0]!=0.0);
if (ctx->Light.Model.LocalViewer == newbool)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.Model.LocalViewer = newbool;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
newbool = (params[0]!=0.0);
if (ctx->Light.Model.TwoSide == newbool)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.Model.TwoSide = newbool;
if (ctx->Light.Enabled && ctx->Light.Model.TwoSide)
ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE;
else
ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE;
break;
case GL_LIGHT_MODEL_COLOR_CONTROL:
if (params[0] == (GLfloat) GL_SINGLE_COLOR)
newenum = GL_SINGLE_COLOR;
else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR)
newenum = GL_SEPARATE_SPECULAR_COLOR;
else {
_mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(param=0x0%x)",
(GLint) params[0] );
return;
}
if (ctx->Light.Model.ColorControl == newenum)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.Model.ColorControl = newenum;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(pname=0x%x)", pname );
break;
}
if (ctx->Driver.LightModelfv)
ctx->Driver.LightModelfv( ctx, pname, params );
}
void GLAPIENTRY
_mesa_LightModeliv( GLenum pname, const GLint *params )
{
GLfloat fparam[4];
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
fparam[0] = INT_TO_FLOAT( params[0] );
fparam[1] = INT_TO_FLOAT( params[1] );
fparam[2] = INT_TO_FLOAT( params[2] );
fparam[3] = INT_TO_FLOAT( params[3] );
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
case GL_LIGHT_MODEL_TWO_SIDE:
case GL_LIGHT_MODEL_COLOR_CONTROL:
fparam[0] = (GLfloat) params[0];
break;
default:
/* Error will be caught later in gl_LightModelfv */
;
}
_mesa_LightModelfv( pname, fparam );
}
void GLAPIENTRY
_mesa_LightModeli( GLenum pname, GLint param )
{
_mesa_LightModeliv( pname, &param );
}
void GLAPIENTRY
_mesa_LightModelf( GLenum pname, GLfloat param )
{
_mesa_LightModelfv( pname, &param );
}
/********** MATERIAL **********/
/*
* Given a face and pname value (ala glColorMaterial), compute a bitmask
* of the targeted material values.
*/
GLuint
_mesa_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname,
GLuint legal, const char *where )
{
GLuint bitmask = 0;
/* Make a bitmask indicating what material attribute(s) we're updating */
switch (pname) {
case GL_EMISSION:
bitmask |= MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION;
break;
case GL_AMBIENT:
bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT;
break;
case GL_DIFFUSE:
bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE;
break;
case GL_SPECULAR:
bitmask |= MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR;
break;
case GL_SHININESS:
bitmask |= MAT_BIT_FRONT_SHININESS | MAT_BIT_BACK_SHININESS;
break;
case GL_AMBIENT_AND_DIFFUSE:
bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT;
bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE;
break;
case GL_COLOR_INDEXES:
bitmask |= MAT_BIT_FRONT_INDEXES | MAT_BIT_BACK_INDEXES;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, where );
return 0;
}
if (face==GL_FRONT) {
bitmask &= FRONT_MATERIAL_BITS;
}
else if (face==GL_BACK) {
bitmask &= BACK_MATERIAL_BITS;
}
else if (face != GL_FRONT_AND_BACK) {
_mesa_error( ctx, GL_INVALID_ENUM, where );
return 0;
}
if (bitmask & ~legal) {
_mesa_error( ctx, GL_INVALID_ENUM, where );
return 0;
}
return bitmask;
}
/* Perform a straight copy between materials.
*/
void
_mesa_copy_materials( struct gl_material *dst,
const struct gl_material *src,
GLuint bitmask )
{
int i;
for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
if (bitmask & (1<<i))
COPY_4FV( dst->Attrib[i], src->Attrib[i] );
}
/* Update derived values following a change in ctx->Light.Material
*/
void
_mesa_update_material( GLcontext *ctx, GLuint bitmask )
{
struct gl_light *light, *list = &ctx->Light.EnabledList;
GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
if (MESA_VERBOSE&VERBOSE_IMMEDIATE)
_mesa_debug(ctx, "_mesa_update_material, mask 0x%x\n", bitmask);
if (!bitmask)
return;
/* update material ambience */
if (bitmask & MAT_BIT_FRONT_AMBIENT) {
foreach (light, list) {
SCALE_3V( light->_MatAmbient[0], light->Ambient,
mat[MAT_ATTRIB_FRONT_AMBIENT]);
}
}
if (bitmask & MAT_BIT_BACK_AMBIENT) {
foreach (light, list) {
SCALE_3V( light->_MatAmbient[1], light->Ambient,
mat[MAT_ATTRIB_BACK_AMBIENT]);
}
}
/* update BaseColor = emission + scene's ambience * material's ambience */
if (bitmask & (MAT_BIT_FRONT_EMISSION | MAT_BIT_FRONT_AMBIENT)) {
COPY_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_EMISSION] );
ACC_SCALE_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_AMBIENT],
ctx->Light.Model.Ambient );
}
if (bitmask & (MAT_BIT_BACK_EMISSION | MAT_BIT_BACK_AMBIENT)) {
COPY_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_EMISSION] );
ACC_SCALE_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_AMBIENT],
ctx->Light.Model.Ambient );
}
/* update material diffuse values */
if (bitmask & MAT_BIT_FRONT_DIFFUSE) {
foreach (light, list) {
SCALE_3V( light->_MatDiffuse[0], light->Diffuse,
mat[MAT_ATTRIB_FRONT_DIFFUSE] );
}
}
if (bitmask & MAT_BIT_BACK_DIFFUSE) {
foreach (light, list) {
SCALE_3V( light->_MatDiffuse[1], light->Diffuse,
mat[MAT_ATTRIB_BACK_DIFFUSE] );
}
}
/* update material specular values */
if (bitmask & MAT_BIT_FRONT_SPECULAR) {
foreach (light, list) {
SCALE_3V( light->_MatSpecular[0], light->Specular,
mat[MAT_ATTRIB_FRONT_SPECULAR]);
}
}
if (bitmask & MAT_BIT_BACK_SPECULAR) {
foreach (light, list) {
SCALE_3V( light->_MatSpecular[1], light->Specular,
mat[MAT_ATTRIB_BACK_SPECULAR]);
}
}
if (bitmask & MAT_BIT_FRONT_SHININESS) {
_mesa_invalidate_shine_table( ctx, 0 );
}
if (bitmask & MAT_BIT_BACK_SHININESS) {
_mesa_invalidate_shine_table( ctx, 1 );
}
}
/*
* Update the current materials from the given rgba color
* according to the bitmask in ColorMaterialBitmask, which is
* set by glColorMaterial().
*/
void
_mesa_update_color_material( GLcontext *ctx, const GLfloat color[4] )
{
GLuint bitmask = ctx->Light.ColorMaterialBitmask;
struct gl_material *mat = &ctx->Light.Material;
int i;
for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
if (bitmask & (1<<i))
COPY_4FV( mat->Attrib[i], color );
_mesa_update_material( ctx, bitmask );
}
void GLAPIENTRY
_mesa_ColorMaterial( GLenum face, GLenum mode )
{
GET_CURRENT_CONTEXT(ctx);
GLuint bitmask;
GLuint legal = (MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION |
MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR |
MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE |
MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (MESA_VERBOSE&VERBOSE_API)
_mesa_debug(ctx, "glColorMaterial %s %s\n",
_mesa_lookup_enum_by_nr(face),
_mesa_lookup_enum_by_nr(mode));
bitmask = _mesa_material_bitmask(ctx, face, mode, legal, "glColorMaterial");
if (ctx->Light.ColorMaterialBitmask == bitmask &&
ctx->Light.ColorMaterialFace == face &&
ctx->Light.ColorMaterialMode == mode)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.ColorMaterialBitmask = bitmask;
ctx->Light.ColorMaterialFace = face;
ctx->Light.ColorMaterialMode = mode;
if (ctx->Light.ColorMaterialEnabled) {
FLUSH_CURRENT( ctx, 0 );
_mesa_update_color_material(ctx,ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
}
if (ctx->Driver.ColorMaterial)
ctx->Driver.ColorMaterial( ctx, face, mode );
}
void GLAPIENTRY
_mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params )
{
GET_CURRENT_CONTEXT(ctx);
GLuint f;
GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
FLUSH_CURRENT(ctx, 0); /* update ctx->Light.Material from vertex buffer */
if (face==GL_FRONT) {
f = 0;
}
else if (face==GL_BACK) {
f = 1;
}
else {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" );
return;
}
switch (pname) {
case GL_AMBIENT:
COPY_4FV( params, mat[MAT_ATTRIB_AMBIENT(f)] );
break;
case GL_DIFFUSE:
COPY_4FV( params, mat[MAT_ATTRIB_DIFFUSE(f)] );
break;
case GL_SPECULAR:
COPY_4FV( params, mat[MAT_ATTRIB_SPECULAR(f)] );
break;
case GL_EMISSION:
COPY_4FV( params, mat[MAT_ATTRIB_EMISSION(f)] );
break;
case GL_SHININESS:
*params = mat[MAT_ATTRIB_SHININESS(f)][0];
break;
case GL_COLOR_INDEXES:
params[0] = mat[MAT_ATTRIB_INDEXES(f)][0];
params[1] = mat[MAT_ATTRIB_INDEXES(f)][1];
params[2] = mat[MAT_ATTRIB_INDEXES(f)][2];
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
}
}
void GLAPIENTRY
_mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params )
{
GET_CURRENT_CONTEXT(ctx);
GLuint f;
GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
FLUSH_CURRENT(ctx, 0); /* update ctx->Light.Material from vertex buffer */
if (face==GL_FRONT) {
f = 0;
}
else if (face==GL_BACK) {
f = 1;
}
else {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" );
return;
}
switch (pname) {
case GL_AMBIENT:
params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][0] );
params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][1] );
params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][2] );
params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][3] );
break;
case GL_DIFFUSE:
params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][0] );
params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][1] );
params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][2] );
params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][3] );
break;
case GL_SPECULAR:
params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][0] );
params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][1] );
params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][2] );
params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][3] );
break;
case GL_EMISSION:
params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][0] );
params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][1] );
params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][2] );
params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][3] );
break;
case GL_SHININESS:
*params = IROUND( mat[MAT_ATTRIB_SHININESS(f)][0] );
break;
case GL_COLOR_INDEXES:
params[0] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][0] );
params[1] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][1] );
params[2] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][2] );
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
}
}
/**********************************************************************/
/***** Lighting computation *****/
/**********************************************************************/
/*
* Notes:
* When two-sided lighting is enabled we compute the color (or index)
* for both the front and back side of the primitive. Then, when the
* orientation of the facet is later learned, we can determine which
* color (or index) to use for rendering.
*
* KW: We now know orientation in advance and only shade for
* the side or sides which are actually required.
*
* Variables:
* n = normal vector
* V = vertex position
* P = light source position
* Pe = (0,0,0,1)
*
* Precomputed:
* IF P[3]==0 THEN
* // light at infinity
* IF local_viewer THEN
* _VP_inf_norm = unit vector from V to P // Precompute
* ELSE
* // eye at infinity
* _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
* ENDIF
* ENDIF
*
* Functions:
* Normalize( v ) = normalized vector v
* Magnitude( v ) = length of vector v
*/
/*
* Whenever the spotlight exponent for a light changes we must call
* this function to recompute the exponent lookup table.
*/
void
_mesa_invalidate_spot_exp_table( struct gl_light *l )
{
l->_SpotExpTable[0][0] = -1;
}
static void
validate_spot_exp_table( struct gl_light *l )
{
GLint i;
GLdouble exponent = l->SpotExponent;
GLdouble tmp = 0;
GLint clamp = 0;
l->_SpotExpTable[0][0] = 0.0;
for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) {
if (clamp == 0) {
tmp = _mesa_pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent);
if (tmp < FLT_MIN * 100.0) {
tmp = 0.0;
clamp = 1;
}
}
l->_SpotExpTable[i][0] = (GLfloat) tmp;
}
for (i = 0; i < EXP_TABLE_SIZE - 1; i++) {
l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] -
l->_SpotExpTable[i][0]);
}
l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0;
}
/* Calculate a new shine table. Doing this here saves a branch in
* lighting, and the cost of doing it early may be partially offset
* by keeping a MRU cache of shine tables for various shine values.
*/
void
_mesa_invalidate_shine_table( GLcontext *ctx, GLuint side )
{
ASSERT(side < 2);
if (ctx->_ShineTable[side])
ctx->_ShineTable[side]->refcount--;
ctx->_ShineTable[side] = NULL;
}
static void
validate_shine_table( GLcontext *ctx, GLuint side, GLfloat shininess )
{
struct gl_shine_tab *list = ctx->_ShineTabList;
struct gl_shine_tab *s;
ASSERT(side < 2);
foreach(s, list)
if ( s->shininess == shininess )
break;
if (s == list) {
GLint j;
GLfloat *m;
foreach(s, list)
if (s->refcount == 0)
break;
m = s->tab;
m[0] = 0.0;
if (shininess == 0.0) {
for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++)
m[j] = 1.0;
}
else {
for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) {
GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1);
if (x < 0.005) /* underflow check */
x = 0.005;
t = _mesa_pow(x, shininess);
if (t > 1e-20)
m[j] = (GLfloat) t;
else
m[j] = 0.0;
}
m[SHINE_TABLE_SIZE] = 1.0;
}
s->shininess = shininess;
}
if (ctx->_ShineTable[side])
ctx->_ShineTable[side]->refcount--;
ctx->_ShineTable[side] = s;
move_to_tail( list, s );
s->refcount++;
}
void
_mesa_validate_all_lighting_tables( GLcontext *ctx )
{
GLuint i;
GLfloat shininess;
shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess)
validate_shine_table( ctx, 0, shininess );
shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_SHININESS][0];
if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess)
validate_shine_table( ctx, 1, shininess );
for (i = 0; i < ctx->Const.MaxLights; i++)
if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1)
validate_spot_exp_table( &ctx->Light.Light[i] );
}
/**
* Examine current lighting parameters to determine if the optimized lighting
* function can be used.
* Also, precompute some lighting values such as the products of light
* source and material ambient, diffuse and specular coefficients.
*/
void
_mesa_update_lighting( GLcontext *ctx )
{
struct gl_light *light;
ctx->Light._NeedEyeCoords = GL_FALSE;
ctx->Light._Flags = 0;
if (!ctx->Light.Enabled)
return;
foreach(light, &ctx->Light.EnabledList) {
ctx->Light._Flags |= light->_Flags;
}
ctx->Light._NeedVertices =
((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) ||
ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR ||
ctx->Light.Model.LocalViewer);
ctx->Light._NeedEyeCoords = ((ctx->Light._Flags & LIGHT_POSITIONAL) ||
ctx->Light.Model.LocalViewer);
/* XXX: This test is overkill & needs to be fixed both for software and
* hardware t&l drivers. The above should be sufficient & should
* be tested to verify this.
*/
if (ctx->Light._NeedVertices)
ctx->Light._NeedEyeCoords = GL_TRUE;
/* Precompute some shading values. Although we reference
* Light.Material here, we can get away without flushing
* FLUSH_UPDATE_CURRENT, as when any outstanding material changes
* are flushed, they will update the derived state at that time.
*/
if (ctx->Visual.rgbMode) {
if (ctx->Light.Model.TwoSide)
_mesa_update_material( ctx,
MAT_BIT_FRONT_EMISSION |
MAT_BIT_FRONT_AMBIENT |
MAT_BIT_FRONT_DIFFUSE |
MAT_BIT_FRONT_SPECULAR |
MAT_BIT_BACK_EMISSION |
MAT_BIT_BACK_AMBIENT |
MAT_BIT_BACK_DIFFUSE |
MAT_BIT_BACK_SPECULAR);
else
_mesa_update_material( ctx,
MAT_BIT_FRONT_EMISSION |
MAT_BIT_FRONT_AMBIENT |
MAT_BIT_FRONT_DIFFUSE |
MAT_BIT_FRONT_SPECULAR);
}
else {
static const GLfloat ci[3] = { .30F, .59F, .11F };
foreach(light, &ctx->Light.EnabledList) {
light->_dli = DOT3(ci, light->Diffuse);
light->_sli = DOT3(ci, light->Specular);
}
}
}
/**
* Update state derived from light position, spot direction.
* Called upon:
* _NEW_MODELVIEW
* _NEW_LIGHT
* _TNL_NEW_NEED_EYE_COORDS
*
* Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled.
* Also update on lighting space changes.
*/
static void
compute_light_positions( GLcontext *ctx )
{
struct gl_light *light;
static const GLfloat eye_z[3] = { 0, 0, 1 };
if (!ctx->Light.Enabled)
return;
if (ctx->_NeedEyeCoords) {
COPY_3V( ctx->_EyeZDir, eye_z );
}
else {
TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelviewMatrixStack.Top->m );
}
foreach (light, &ctx->Light.EnabledList) {
if (ctx->_NeedEyeCoords) {
/* _Position is in eye coordinate space */
COPY_4FV( light->_Position, light->EyePosition );
}
else {
/* _Position is in object coordinate space */
TRANSFORM_POINT( light->_Position, ctx->ModelviewMatrixStack.Top->inv,
light->EyePosition );
}
if (!(light->_Flags & LIGHT_POSITIONAL)) {
/* VP (VP) = Normalize( Position ) */
COPY_3V( light->_VP_inf_norm, light->_Position );
NORMALIZE_3FV( light->_VP_inf_norm );
if (!ctx->Light.Model.LocalViewer) {
/* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */
ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir);
NORMALIZE_3FV( light->_h_inf_norm );
}
light->_VP_inf_spot_attenuation = 1.0;
}
else {
/* positional light w/ homogeneous coordinate, divide by W */
GLfloat wInv = 1.0 / light->_Position[3];
light->_Position[0] *= wInv;
light->_Position[1] *= wInv;
light->_Position[2] *= wInv;
}
if (light->_Flags & LIGHT_SPOT) {
if (ctx->_NeedEyeCoords) {
COPY_3V( light->_NormDirection, light->EyeDirection );
}
else {
TRANSFORM_NORMAL( light->_NormDirection,
light->EyeDirection,
ctx->ModelviewMatrixStack.Top->m);
}
NORMALIZE_3FV( light->_NormDirection );
if (!(light->_Flags & LIGHT_POSITIONAL)) {
GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm,
light->_NormDirection);
if (PV_dot_dir > light->_CosCutoff) {
double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
int k = (int) x;
light->_VP_inf_spot_attenuation =
(GLfloat) (light->_SpotExpTable[k][0] +
(x-k)*light->_SpotExpTable[k][1]);
}
else {
light->_VP_inf_spot_attenuation = 0;
}
}
}
}
}
static void
update_modelview_scale( GLcontext *ctx )
{
ctx->_ModelViewInvScale = 1.0F;
if (!_math_matrix_is_length_preserving(ctx->ModelviewMatrixStack.Top)) {
const GLfloat *m = ctx->ModelviewMatrixStack.Top->inv;
GLfloat f = m[2] * m[2] + m[6] * m[6] + m[10] * m[10];
if (f < 1e-12) f = 1.0;
if (ctx->_NeedEyeCoords)
ctx->_ModelViewInvScale = (GLfloat) INV_SQRTF(f);
else
ctx->_ModelViewInvScale = (GLfloat) SQRTF(f);
}
}
/**
* Bring up to date any state that relies on _NeedEyeCoords.
*/
void
_mesa_update_tnl_spaces( GLcontext *ctx, GLuint new_state )
{
const GLuint oldneedeyecoords = ctx->_NeedEyeCoords;
(void) new_state;
ctx->_NeedEyeCoords = GL_FALSE;
if (ctx->_ForceEyeCoords ||
(ctx->Texture._GenFlags & TEXGEN_NEED_EYE_COORD) ||
ctx->Point._Attenuated ||
ctx->Light._NeedEyeCoords)
ctx->_NeedEyeCoords = GL_TRUE;
if (ctx->Light.Enabled &&
!_math_matrix_is_length_preserving(ctx->ModelviewMatrixStack.Top))
ctx->_NeedEyeCoords = GL_TRUE;
/* Check if the truth-value interpretations of the bitfields have
* changed:
*/
if (oldneedeyecoords != ctx->_NeedEyeCoords) {
/* Recalculate all state that depends on _NeedEyeCoords.
*/
update_modelview_scale(ctx);
compute_light_positions( ctx );
if (ctx->Driver.LightingSpaceChange)
ctx->Driver.LightingSpaceChange( ctx );
}
else {
GLuint new_state = ctx->NewState;
/* Recalculate that same state only if it has been invalidated
* by other statechanges.
*/
if (new_state & _NEW_MODELVIEW)
update_modelview_scale(ctx);
if (new_state & (_NEW_LIGHT|_NEW_MODELVIEW))
compute_light_positions( ctx );
}
}
/**
* Drivers may need this if the hardware tnl unit doesn't support the
* light-in-modelspace optimization. It's also useful for debugging.
*/
void
_mesa_allow_light_in_model( GLcontext *ctx, GLboolean flag )
{
ctx->_ForceEyeCoords = !flag;
ctx->NewState |= _NEW_POINT; /* one of the bits from
* _MESA_NEW_NEED_EYE_COORDS.
*/
}
/**********************************************************************/
/***** Initialization *****/
/**********************************************************************/
/**
* Initialize the n-th light data structure.
*
* \param l pointer to the gl_light structure to be initialized.
* \param n number of the light.
* \note The defaults for light 0 are different than the other lights.
*/
static void
init_light( struct gl_light *l, GLuint n )
{
make_empty_list( l );
ASSIGN_4V( l->Ambient, 0.0, 0.0, 0.0, 1.0 );
if (n==0) {
ASSIGN_4V( l->Diffuse, 1.0, 1.0, 1.0, 1.0 );
ASSIGN_4V( l->Specular, 1.0, 1.0, 1.0, 1.0 );
}
else {
ASSIGN_4V( l->Diffuse, 0.0, 0.0, 0.0, 1.0 );
ASSIGN_4V( l->Specular, 0.0, 0.0, 0.0, 1.0 );
}
ASSIGN_4V( l->EyePosition, 0.0, 0.0, 1.0, 0.0 );
ASSIGN_3V( l->EyeDirection, 0.0, 0.0, -1.0 );
l->SpotExponent = 0.0;
_mesa_invalidate_spot_exp_table( l );
l->SpotCutoff = 180.0;
l->_CosCutoffNeg = -1.0f;
l->_CosCutoff = 0.0; /* KW: -ve values not admitted */
l->ConstantAttenuation = 1.0;
l->LinearAttenuation = 0.0;
l->QuadraticAttenuation = 0.0;
l->Enabled = GL_FALSE;
}
/**
* Initialize the light model data structure.
*
* \param lm pointer to the gl_lightmodel structure to be initialized.
*/
static void
init_lightmodel( struct gl_lightmodel *lm )
{
ASSIGN_4V( lm->Ambient, 0.2F, 0.2F, 0.2F, 1.0F );
lm->LocalViewer = GL_FALSE;
lm->TwoSide = GL_FALSE;
lm->ColorControl = GL_SINGLE_COLOR;
}
/**
* Initialize the material data structure.
*
* \param m pointer to the gl_material structure to be initialized.
*/
static void
init_material( struct gl_material *m )
{
ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F );
ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F );
}
/**
* Initialize all lighting state for the given context.
*/
void
_mesa_init_lighting( GLcontext *ctx )
{
GLuint i;
/* Lighting group */
for (i = 0; i < MAX_LIGHTS; i++) {
init_light( &ctx->Light.Light[i], i );
}
make_empty_list( &ctx->Light.EnabledList );
init_lightmodel( &ctx->Light.Model );
init_material( &ctx->Light.Material );
ctx->Light.ShadeModel = GL_SMOOTH;
ctx->Light.Enabled = GL_FALSE;
ctx->Light.ColorMaterialFace = GL_FRONT_AND_BACK;
ctx->Light.ColorMaterialMode = GL_AMBIENT_AND_DIFFUSE;
ctx->Light.ColorMaterialBitmask = _mesa_material_bitmask( ctx,
GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE, ~0,
NULL );
ctx->Light.ColorMaterialEnabled = GL_FALSE;
ctx->Light.ClampVertexColor = GL_TRUE;
/* Lighting miscellaneous */
ctx->_ShineTabList = MALLOC_STRUCT( gl_shine_tab );
make_empty_list( ctx->_ShineTabList );
/* Allocate 10 (arbitrary) shininess lookup tables */
for (i = 0 ; i < 10 ; i++) {
struct gl_shine_tab *s = MALLOC_STRUCT( gl_shine_tab );
s->shininess = -1;
s->refcount = 0;
insert_at_tail( ctx->_ShineTabList, s );
}
/* Miscellaneous */
ctx->Light._NeedEyeCoords = GL_FALSE;
ctx->_NeedEyeCoords = GL_FALSE;
ctx->_ModelViewInvScale = 1.0;
}
/**
* Deallocate malloc'd lighting state attached to given context.
*/
void
_mesa_free_lighting_data( GLcontext *ctx )
{
struct gl_shine_tab *s, *tmps;
/* Free lighting shininess exponentiation table */
foreach_s( s, tmps, ctx->_ShineTabList ) {
_mesa_free( s );
}
_mesa_free( ctx->_ShineTabList );
}