blob: 512d52704d822c5659598d5ac7bd3248e9c1e15e [file] [log] [blame]
/**************************************************************************
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "glheader.h"
#include "macros.h"
#include "enums.h"
#include "shader/program.h"
#include "shader/prog_parameter.h"
#include "shader/prog_instruction.h"
#include "shader/prog_print.h"
#include "shader/prog_statevars.h"
#include "texenvprogram.h"
struct texenvprog_cache_item
{
GLuint hash;
void *key;
struct gl_fragment_program *data;
struct texenvprog_cache_item *next;
};
/**
* This MAX is probably a bit generous, but that's OK. There can be
* up to four instructions per texture unit (TEX + 3 for combine),
* then there's fog and specular add.
*/
#define MAX_INSTRUCTIONS ((MAX_TEXTURE_UNITS * 4) + 12)
#define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
struct mode_opt {
GLuint Source:4;
GLuint Operand:3;
};
struct state_key {
GLbitfield enabled_units;
GLuint separate_specular:1;
GLuint fog_enabled:1;
GLuint fog_mode:2;
struct {
GLuint enabled:1;
GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
GLuint shadow:1;
GLuint ScaleShiftRGB:2;
GLuint ScaleShiftA:2;
GLuint NumArgsRGB:2;
GLuint ModeRGB:4;
struct mode_opt OptRGB[3];
GLuint NumArgsA:2;
GLuint ModeA:4;
struct mode_opt OptA[3];
} unit[8];
};
#define FOG_LINEAR 0
#define FOG_EXP 1
#define FOG_EXP2 2
#define FOG_UNKNOWN 3
static GLuint translate_fog_mode( GLenum mode )
{
switch (mode) {
case GL_LINEAR: return FOG_LINEAR;
case GL_EXP: return FOG_EXP;
case GL_EXP2: return FOG_EXP2;
default: return FOG_UNKNOWN;
}
}
#define OPR_SRC_COLOR 0
#define OPR_ONE_MINUS_SRC_COLOR 1
#define OPR_SRC_ALPHA 2
#define OPR_ONE_MINUS_SRC_ALPHA 3
#define OPR_ZERO 4
#define OPR_ONE 5
#define OPR_UNKNOWN 7
static GLuint translate_operand( GLenum operand )
{
switch (operand) {
case GL_SRC_COLOR: return OPR_SRC_COLOR;
case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
case GL_ZERO: return OPR_ZERO;
case GL_ONE: return OPR_ONE;
default: return OPR_UNKNOWN;
}
}
#define SRC_TEXTURE 0
#define SRC_TEXTURE0 1
#define SRC_TEXTURE1 2
#define SRC_TEXTURE2 3
#define SRC_TEXTURE3 4
#define SRC_TEXTURE4 5
#define SRC_TEXTURE5 6
#define SRC_TEXTURE6 7
#define SRC_TEXTURE7 8
#define SRC_CONSTANT 9
#define SRC_PRIMARY_COLOR 10
#define SRC_PREVIOUS 11
#define SRC_UNKNOWN 15
static GLuint translate_source( GLenum src )
{
switch (src) {
case GL_TEXTURE: return SRC_TEXTURE;
case GL_TEXTURE0:
case GL_TEXTURE1:
case GL_TEXTURE2:
case GL_TEXTURE3:
case GL_TEXTURE4:
case GL_TEXTURE5:
case GL_TEXTURE6:
case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
case GL_CONSTANT: return SRC_CONSTANT;
case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
case GL_PREVIOUS: return SRC_PREVIOUS;
default: return SRC_UNKNOWN;
}
}
#define MODE_REPLACE 0
#define MODE_MODULATE 1
#define MODE_ADD 2
#define MODE_ADD_SIGNED 3
#define MODE_INTERPOLATE 4
#define MODE_SUBTRACT 5
#define MODE_DOT3_RGB 6
#define MODE_DOT3_RGB_EXT 7
#define MODE_DOT3_RGBA 8
#define MODE_DOT3_RGBA_EXT 9
#define MODE_MODULATE_ADD_ATI 10
#define MODE_MODULATE_SIGNED_ADD_ATI 11
#define MODE_MODULATE_SUBTRACT_ATI 12
#define MODE_UNKNOWN 15
static GLuint translate_mode( GLenum mode )
{
switch (mode) {
case GL_REPLACE: return MODE_REPLACE;
case GL_MODULATE: return MODE_MODULATE;
case GL_ADD: return MODE_ADD;
case GL_ADD_SIGNED: return MODE_ADD_SIGNED;
case GL_INTERPOLATE: return MODE_INTERPOLATE;
case GL_SUBTRACT: return MODE_SUBTRACT;
case GL_DOT3_RGB: return MODE_DOT3_RGB;
case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
default: return MODE_UNKNOWN;
}
}
#define TEXTURE_UNKNOWN_INDEX 7
static GLuint translate_tex_src_bit( GLbitfield bit )
{
switch (bit) {
case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
default: return TEXTURE_UNKNOWN_INDEX;
}
}
/**
* Examine current texture environment state and generate a unique
* key to identify it.
*/
static void make_state_key( GLcontext *ctx, struct state_key *key )
{
GLuint i, j;
memset(key, 0, sizeof(*key));
for (i=0;i<MAX_TEXTURE_UNITS;i++) {
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
continue;
key->unit[i].enabled = 1;
key->enabled_units |= (1<<i);
key->unit[i].source_index =
translate_tex_src_bit(texUnit->_ReallyEnabled);
key->unit[i].shadow = texUnit->_Current->CompareMode == GL_COMPARE_R_TO_TEXTURE;
key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
key->unit[i].ModeRGB =
translate_mode(texUnit->_CurrentCombine->ModeRGB);
key->unit[i].ModeA =
translate_mode(texUnit->_CurrentCombine->ModeA);
key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
for (j=0;j<3;j++) {
key->unit[i].OptRGB[j].Operand =
translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
key->unit[i].OptA[j].Operand =
translate_operand(texUnit->_CurrentCombine->OperandA[j]);
key->unit[i].OptRGB[j].Source =
translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
key->unit[i].OptA[j].Source =
translate_source(texUnit->_CurrentCombine->SourceA[j]);
}
}
if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
key->separate_specular = 1;
if (ctx->Fog.Enabled) {
key->fog_enabled = 1;
key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
}
}
/* Use uregs to represent registers internally, translate to Mesa's
* expected formats on emit.
*
* NOTE: These are passed by value extensively in this file rather
* than as usual by pointer reference. If this disturbs you, try
* remembering they are just 32bits in size.
*
* GCC is smart enough to deal with these dword-sized structures in
* much the same way as if I had defined them as dwords and was using
* macros to access and set the fields. This is much nicer and easier
* to evolve.
*/
struct ureg {
GLuint file:4;
GLuint idx:8;
GLuint negatebase:1;
GLuint abs:1;
GLuint negateabs:1;
GLuint swz:12;
GLuint pad:5;
};
static const struct ureg undef = {
PROGRAM_UNDEFINED,
~0,
0,
0,
0,
0,
0
};
/* State used to build the fragment program:
*/
struct texenv_fragment_program {
struct gl_fragment_program *program;
GLcontext *ctx;
struct state_key *state;
GLbitfield alu_temps; /* Track texture indirections, see spec. */
GLbitfield temps_output; /* Track texture indirections, see spec. */
GLbitfield temp_in_use; /* Tracks temporary regs which are in use. */
GLboolean error;
struct ureg src_texture[MAX_TEXTURE_UNITS];
/* Reg containing each texture unit's sampled texture color,
* else undef.
*/
struct ureg src_previous; /* Reg containing color from previous
* stage. May need to be decl'd.
*/
GLuint last_tex_stage; /* Number of last enabled texture unit */
struct ureg half;
struct ureg one;
struct ureg zero;
};
static struct ureg make_ureg(GLuint file, GLuint idx)
{
struct ureg reg;
reg.file = file;
reg.idx = idx;
reg.negatebase = 0;
reg.abs = 0;
reg.negateabs = 0;
reg.swz = SWIZZLE_NOOP;
reg.pad = 0;
return reg;
}
static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
{
reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
GET_SWZ(reg.swz, y),
GET_SWZ(reg.swz, z),
GET_SWZ(reg.swz, w));
return reg;
}
static struct ureg swizzle1( struct ureg reg, int x )
{
return swizzle(reg, x, x, x, x);
}
static struct ureg negate( struct ureg reg )
{
reg.negatebase ^= 1;
return reg;
}
static GLboolean is_undef( struct ureg reg )
{
return reg.file == PROGRAM_UNDEFINED;
}
static struct ureg get_temp( struct texenv_fragment_program *p )
{
GLint bit;
/* First try and reuse temps which have been used already:
*/
bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
/* Then any unused temporary:
*/
if (!bit)
bit = _mesa_ffs( ~p->temp_in_use );
if (!bit) {
_mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
_mesa_exit(1);
}
if ((GLuint) bit > p->program->Base.NumTemporaries)
p->program->Base.NumTemporaries = bit;
p->temp_in_use |= 1<<(bit-1);
return make_ureg(PROGRAM_TEMPORARY, (bit-1));
}
static struct ureg get_tex_temp( struct texenv_fragment_program *p )
{
int bit;
/* First try to find availble temp not previously used (to avoid
* starting a new texture indirection). According to the spec, the
* ~p->temps_output isn't necessary, but will keep it there for
* now:
*/
bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
/* Then any unused temporary:
*/
if (!bit)
bit = _mesa_ffs( ~p->temp_in_use );
if (!bit) {
_mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
_mesa_exit(1);
}
if ((GLuint) bit > p->program->Base.NumTemporaries)
p->program->Base.NumTemporaries = bit;
p->temp_in_use |= 1<<(bit-1);
return make_ureg(PROGRAM_TEMPORARY, (bit-1));
}
static void release_temps( struct texenv_fragment_program *p )
{
GLuint max_temp = p->ctx->Const.FragmentProgram.MaxTemps;
/* KW: To support tex_env_crossbar, don't release the registers in
* temps_output.
*/
if (max_temp >= sizeof(int) * 8)
p->temp_in_use = p->temps_output;
else
p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
}
static struct ureg register_param5( struct texenv_fragment_program *p,
GLint s0,
GLint s1,
GLint s2,
GLint s3,
GLint s4)
{
gl_state_index tokens[STATE_LENGTH];
GLuint idx;
tokens[0] = s0;
tokens[1] = s1;
tokens[2] = s2;
tokens[3] = s3;
tokens[4] = s4;
idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
return make_ureg(PROGRAM_STATE_VAR, idx);
}
#define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
#define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
#define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
{
p->program->Base.InputsRead |= (1 << input);
return make_ureg(PROGRAM_INPUT, input);
}
static void emit_arg( struct prog_src_register *reg,
struct ureg ureg )
{
reg->File = ureg.file;
reg->Index = ureg.idx;
reg->Swizzle = ureg.swz;
reg->NegateBase = ureg.negatebase ? 0xf : 0x0;
reg->Abs = ureg.abs;
reg->NegateAbs = ureg.negateabs;
}
static void emit_dst( struct prog_dst_register *dst,
struct ureg ureg, GLuint mask )
{
dst->File = ureg.file;
dst->Index = ureg.idx;
dst->WriteMask = mask;
dst->CondMask = COND_TR; /* always pass cond test */
dst->CondSwizzle = SWIZZLE_NOOP;
}
static struct prog_instruction *
emit_op(struct texenv_fragment_program *p,
enum prog_opcode op,
struct ureg dest,
GLuint mask,
GLboolean saturate,
struct ureg src0,
struct ureg src1,
struct ureg src2 )
{
GLuint nr = p->program->Base.NumInstructions++;
struct prog_instruction *inst = &p->program->Base.Instructions[nr];
assert(nr < MAX_INSTRUCTIONS);
_mesa_init_instructions(inst, 1);
inst->Opcode = op;
emit_arg( &inst->SrcReg[0], src0 );
emit_arg( &inst->SrcReg[1], src1 );
emit_arg( &inst->SrcReg[2], src2 );
inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
emit_dst( &inst->DstReg, dest, mask );
/* Accounting for indirection tracking:
*/
if (dest.file == PROGRAM_TEMPORARY)
p->temps_output |= 1 << dest.idx;
return inst;
}
static struct ureg emit_arith( struct texenv_fragment_program *p,
enum prog_opcode op,
struct ureg dest,
GLuint mask,
GLboolean saturate,
struct ureg src0,
struct ureg src1,
struct ureg src2 )
{
emit_op(p, op, dest, mask, saturate, src0, src1, src2);
/* Accounting for indirection tracking:
*/
if (src0.file == PROGRAM_TEMPORARY)
p->alu_temps |= 1 << src0.idx;
if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
p->alu_temps |= 1 << src1.idx;
if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
p->alu_temps |= 1 << src2.idx;
if (dest.file == PROGRAM_TEMPORARY)
p->alu_temps |= 1 << dest.idx;
p->program->Base.NumAluInstructions++;
return dest;
}
static struct ureg emit_texld( struct texenv_fragment_program *p,
enum prog_opcode op,
struct ureg dest,
GLuint destmask,
GLuint tex_unit,
GLuint tex_idx,
struct ureg coord )
{
struct prog_instruction *inst = emit_op( p, op,
dest, destmask,
GL_FALSE, /* don't saturate? */
coord, /* arg 0? */
undef,
undef);
inst->TexSrcTarget = tex_idx;
inst->TexSrcUnit = tex_unit;
p->program->Base.NumTexInstructions++;
/* Is this a texture indirection?
*/
if ((coord.file == PROGRAM_TEMPORARY &&
(p->temps_output & (1<<coord.idx))) ||
(dest.file == PROGRAM_TEMPORARY &&
(p->alu_temps & (1<<dest.idx)))) {
p->program->Base.NumTexIndirections++;
p->temps_output = 1<<coord.idx;
p->alu_temps = 0;
assert(0); /* KW: texture env crossbar */
}
return dest;
}
static struct ureg register_const4f( struct texenv_fragment_program *p,
GLfloat s0,
GLfloat s1,
GLfloat s2,
GLfloat s3)
{
GLfloat values[4];
GLuint idx, swizzle;
values[0] = s0;
values[1] = s1;
values[2] = s2;
values[3] = s3;
idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
&swizzle );
ASSERT(swizzle == SWIZZLE_NOOP);
return make_ureg(PROGRAM_STATE_VAR, idx);
}
#define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
#define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
#define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
static struct ureg get_one( struct texenv_fragment_program *p )
{
if (is_undef(p->one))
p->one = register_scalar_const(p, 1.0);
return p->one;
}
static struct ureg get_half( struct texenv_fragment_program *p )
{
if (is_undef(p->half))
p->half = register_scalar_const(p, 0.5);
return p->half;
}
static struct ureg get_zero( struct texenv_fragment_program *p )
{
if (is_undef(p->zero))
p->zero = register_scalar_const(p, 0.0);
return p->zero;
}
static void program_error( struct texenv_fragment_program *p, const char *msg )
{
_mesa_problem(NULL, msg);
p->error = 1;
}
static struct ureg get_source( struct texenv_fragment_program *p,
GLuint src, GLuint unit )
{
switch (src) {
case SRC_TEXTURE:
assert(!is_undef(p->src_texture[unit]));
return p->src_texture[unit];
case SRC_TEXTURE0:
case SRC_TEXTURE1:
case SRC_TEXTURE2:
case SRC_TEXTURE3:
case SRC_TEXTURE4:
case SRC_TEXTURE5:
case SRC_TEXTURE6:
case SRC_TEXTURE7:
assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
return p->src_texture[src - SRC_TEXTURE0];
case SRC_CONSTANT:
return register_param2(p, STATE_TEXENV_COLOR, unit);
case SRC_PRIMARY_COLOR:
return register_input(p, FRAG_ATTRIB_COL0);
case SRC_PREVIOUS:
default:
if (is_undef(p->src_previous))
return register_input(p, FRAG_ATTRIB_COL0);
else
return p->src_previous;
}
}
static struct ureg emit_combine_source( struct texenv_fragment_program *p,
GLuint mask,
GLuint unit,
GLuint source,
GLuint operand )
{
struct ureg arg, src, one;
src = get_source(p, source, unit);
switch (operand) {
case OPR_ONE_MINUS_SRC_COLOR:
/* Get unused tmp,
* Emit tmp = 1.0 - arg.xyzw
*/
arg = get_temp( p );
one = get_one( p );
return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
case OPR_SRC_ALPHA:
if (mask == WRITEMASK_W)
return src;
else
return swizzle1( src, SWIZZLE_W );
case OPR_ONE_MINUS_SRC_ALPHA:
/* Get unused tmp,
* Emit tmp = 1.0 - arg.wwww
*/
arg = get_temp(p);
one = get_one(p);
return emit_arith(p, OPCODE_SUB, arg, mask, 0,
one, swizzle1(src, SWIZZLE_W), undef);
case OPR_ZERO:
return get_zero(p);
case OPR_ONE:
return get_one(p);
case OPR_SRC_COLOR:
default:
return src;
}
}
static GLboolean args_match( struct state_key *key, GLuint unit )
{
GLuint i, nr = key->unit[unit].NumArgsRGB;
for (i = 0 ; i < nr ; i++) {
if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
return GL_FALSE;
switch(key->unit[unit].OptA[i].Operand) {
case OPR_SRC_ALPHA:
switch(key->unit[unit].OptRGB[i].Operand) {
case OPR_SRC_COLOR:
case OPR_SRC_ALPHA:
break;
default:
return GL_FALSE;
}
break;
case OPR_ONE_MINUS_SRC_ALPHA:
switch(key->unit[unit].OptRGB[i].Operand) {
case OPR_ONE_MINUS_SRC_COLOR:
case OPR_ONE_MINUS_SRC_ALPHA:
break;
default:
return GL_FALSE;
}
break;
default:
return GL_FALSE; /* impossible */
}
}
return GL_TRUE;
}
static struct ureg emit_combine( struct texenv_fragment_program *p,
struct ureg dest,
GLuint mask,
GLboolean saturate,
GLuint unit,
GLuint nr,
GLuint mode,
const struct mode_opt *opt)
{
struct ureg src[3];
struct ureg tmp, half;
GLuint i;
tmp = undef; /* silence warning (bug 5318) */
for (i = 0; i < nr; i++)
src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
switch (mode) {
case MODE_REPLACE:
if (mask == WRITEMASK_XYZW && !saturate)
return src[0];
else
return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
case MODE_MODULATE:
return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
src[0], src[1], undef );
case MODE_ADD:
return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
src[0], src[1], undef );
case MODE_ADD_SIGNED:
/* tmp = arg0 + arg1
* result = tmp - .5
*/
half = get_half(p);
tmp = get_temp( p );
emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
return dest;
case MODE_INTERPOLATE:
/* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
*/
return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
case MODE_SUBTRACT:
return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
case MODE_DOT3_RGBA:
case MODE_DOT3_RGBA_EXT:
case MODE_DOT3_RGB_EXT:
case MODE_DOT3_RGB: {
struct ureg tmp0 = get_temp( p );
struct ureg tmp1 = get_temp( p );
struct ureg neg1 = register_scalar_const(p, -1);
struct ureg two = register_scalar_const(p, 2);
/* tmp0 = 2*src0 - 1
* tmp1 = 2*src1 - 1
*
* dst = tmp0 dot3 tmp1
*/
emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
two, src[0], neg1);
if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
tmp1 = tmp0;
else
emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
two, src[1], neg1);
emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
return dest;
}
case MODE_MODULATE_ADD_ATI:
/* Arg0 * Arg2 + Arg1 */
return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
src[0], src[2], src[1] );
case MODE_MODULATE_SIGNED_ADD_ATI: {
/* Arg0 * Arg2 + Arg1 - 0.5 */
struct ureg tmp0 = get_temp(p);
half = get_half(p);
emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
return dest;
}
case MODE_MODULATE_SUBTRACT_ATI:
/* Arg0 * Arg2 - Arg1 */
emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
return dest;
default:
return src[0];
}
}
/**
* Generate instructions for one texture unit's env/combiner mode.
*/
static struct ureg
emit_texenv(struct texenv_fragment_program *p, GLuint unit)
{
struct state_key *key = p->state;
GLboolean saturate = (unit < p->last_tex_stage);
GLuint rgb_shift, alpha_shift;
struct ureg out, shift;
struct ureg dest;
if (!key->unit[unit].enabled) {
return get_source(p, SRC_PREVIOUS, 0);
}
switch (key->unit[unit].ModeRGB) {
case MODE_DOT3_RGB_EXT:
alpha_shift = key->unit[unit].ScaleShiftA;
rgb_shift = 0;
break;
case MODE_DOT3_RGBA_EXT:
alpha_shift = 0;
rgb_shift = 0;
break;
default:
rgb_shift = key->unit[unit].ScaleShiftRGB;
alpha_shift = key->unit[unit].ScaleShiftA;
break;
}
/* If this is the very last calculation, emit direct to output reg:
*/
if (key->separate_specular ||
unit != p->last_tex_stage ||
alpha_shift ||
rgb_shift)
dest = get_temp( p );
else
dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR);
/* Emit the RGB and A combine ops
*/
if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
args_match(key, unit)) {
out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
unit,
key->unit[unit].NumArgsRGB,
key->unit[unit].ModeRGB,
key->unit[unit].OptRGB);
}
else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
unit,
key->unit[unit].NumArgsRGB,
key->unit[unit].ModeRGB,
key->unit[unit].OptRGB);
}
else {
/* Need to do something to stop from re-emitting identical
* argument calculations here:
*/
out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
unit,
key->unit[unit].NumArgsRGB,
key->unit[unit].ModeRGB,
key->unit[unit].OptRGB);
out = emit_combine( p, dest, WRITEMASK_W, saturate,
unit,
key->unit[unit].NumArgsA,
key->unit[unit].ModeA,
key->unit[unit].OptA);
}
/* Deal with the final shift:
*/
if (alpha_shift || rgb_shift) {
if (rgb_shift == alpha_shift) {
shift = register_scalar_const(p, 1<<rgb_shift);
}
else {
shift = register_const4f(p,
1<<rgb_shift,
1<<rgb_shift,
1<<rgb_shift,
1<<alpha_shift);
}
return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
saturate, out, shift, undef );
}
else
return out;
}
/**
* Generate instruction for getting a texture source term.
*/
static void load_texture( struct texenv_fragment_program *p, GLuint unit )
{
if (is_undef(p->src_texture[unit])) {
GLuint dim = p->state->unit[unit].source_index;
struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
struct ureg tmp = get_tex_temp( p );
if (dim == TEXTURE_UNKNOWN_INDEX)
program_error(p, "TexSrcBit");
/* TODO: Use D0_MASK_XY where possible.
*/
if (p->state->unit[unit].enabled) {
p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
tmp, WRITEMASK_XYZW,
unit, dim, texcoord );
if (p->state->unit[unit].shadow)
p->program->Base.ShadowSamplers |= 1 << unit;
} else
p->src_texture[unit] = get_zero(p);
}
}
static GLboolean load_texenv_source( struct texenv_fragment_program *p,
GLuint src, GLuint unit )
{
switch (src) {
case SRC_TEXTURE:
load_texture(p, unit);
break;
case SRC_TEXTURE0:
case SRC_TEXTURE1:
case SRC_TEXTURE2:
case SRC_TEXTURE3:
case SRC_TEXTURE4:
case SRC_TEXTURE5:
case SRC_TEXTURE6:
case SRC_TEXTURE7:
load_texture(p, src - SRC_TEXTURE0);
break;
default:
break;
}
return GL_TRUE;
}
/**
* Generate instructions for loading all texture source terms.
*/
static GLboolean
load_texunit_sources( struct texenv_fragment_program *p, int unit )
{
struct state_key *key = p->state;
GLuint i;
for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit);
}
for (i = 0; i < key->unit[unit].NumArgsA; i++) {
load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
}
return GL_TRUE;
}
/**
* Generate a new fragment program which implements the context's
* current texture env/combine mode.
*/
static void
create_new_program(GLcontext *ctx, struct state_key *key,
struct gl_fragment_program *program)
{
struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
struct texenv_fragment_program p;
GLuint unit;
struct ureg cf, out;
_mesa_memset(&p, 0, sizeof(p));
p.ctx = ctx;
p.state = key;
p.program = program;
/* During code generation, use locally-allocated instruction buffer,
* then alloc dynamic storage below.
*/
p.program->Base.Instructions = instBuffer;
p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
p.program->Base.NumTexIndirections = 1; /* correct? */
p.program->Base.NumTexInstructions = 0;
p.program->Base.NumAluInstructions = 0;
p.program->Base.String = NULL;
p.program->Base.NumInstructions =
p.program->Base.NumTemporaries =
p.program->Base.NumParameters =
p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
p.program->Base.Parameters = _mesa_new_parameter_list();
p.program->Base.InputsRead = 0;
p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR;
for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
p.src_texture[unit] = undef;
p.src_previous = undef;
p.half = undef;
p.zero = undef;
p.one = undef;
p.last_tex_stage = 0;
release_temps(&p);
if (key->enabled_units) {
/* First pass - to support texture_env_crossbar, first identify
* all referenced texture sources and emit texld instructions
* for each:
*/
for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
if (key->unit[unit].enabled) {
load_texunit_sources( &p, unit );
p.last_tex_stage = unit;
}
/* Second pass - emit combine instructions to build final color:
*/
for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
if (key->enabled_units & (1<<unit)) {
p.src_previous = emit_texenv( &p, unit );
release_temps(&p); /* release all temps */
}
}
cf = get_source( &p, SRC_PREVIOUS, 0 );
out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLR );
if (key->separate_specular) {
/* Emit specular add.
*/
struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
}
else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
/* Will wind up in here if no texture enabled or a couple of
* other scenarios (GL_REPLACE for instance).
*/
emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
}
/* Finish up:
*/
emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
if (key->fog_enabled) {
/* Pull fog mode from GLcontext, the value in the state key is
* a reduced value and not what is expected in FogOption
*/
p.program->FogOption = ctx->Fog.Mode;
} else
p.program->FogOption = GL_NONE;
if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
program_error(&p, "Exceeded max nr indirect texture lookups");
if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
program_error(&p, "Exceeded max TEX instructions");
if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
program_error(&p, "Exceeded max ALU instructions");
ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
/* Allocate final instruction array */
program->Base.Instructions
= _mesa_alloc_instructions(program->Base.NumInstructions);
if (!program->Base.Instructions) {
_mesa_error(ctx, GL_OUT_OF_MEMORY,
"generating tex env program");
return;
}
_mesa_copy_instructions(program->Base.Instructions, instBuffer,
program->Base.NumInstructions);
/* Notify driver the fragment program has (actually) changed.
*/
if (ctx->Driver.ProgramStringNotify) {
ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
&p.program->Base );
}
if (DISASSEM) {
_mesa_print_program(&p.program->Base);
_mesa_printf("\n");
}
}
static struct gl_fragment_program *
search_cache(const struct texenvprog_cache *cache,
GLuint hash,
const void *key,
GLuint keysize)
{
struct texenvprog_cache_item *c;
for (c = cache->items[hash % cache->size]; c; c = c->next) {
if (c->hash == hash && memcmp(c->key, key, keysize) == 0)
return c->data;
}
return NULL;
}
static void rehash( struct texenvprog_cache *cache )
{
struct texenvprog_cache_item **items;
struct texenvprog_cache_item *c, *next;
GLuint size, i;
size = cache->size * 3;
items = (struct texenvprog_cache_item**) _mesa_malloc(size * sizeof(*items));
_mesa_memset(items, 0, size * sizeof(*items));
for (i = 0; i < cache->size; i++)
for (c = cache->items[i]; c; c = next) {
next = c->next;
c->next = items[c->hash % size];
items[c->hash % size] = c;
}
_mesa_free(cache->items);
cache->items = items;
cache->size = size;
}
static void clear_cache(GLcontext *ctx, struct texenvprog_cache *cache)
{
struct texenvprog_cache_item *c, *next;
GLuint i;
for (i = 0; i < cache->size; i++) {
for (c = cache->items[i]; c; c = next) {
next = c->next;
_mesa_free(c->key);
_mesa_reference_fragprog(ctx, &c->data, NULL);
_mesa_free(c);
}
cache->items[i] = NULL;
}
cache->n_items = 0;
}
static void cache_item( GLcontext *ctx,
struct texenvprog_cache *cache,
GLuint hash,
const struct state_key *key,
struct gl_fragment_program *prog)
{
struct texenvprog_cache_item *c = CALLOC_STRUCT(texenvprog_cache_item);
c->hash = hash;
c->key = _mesa_malloc(sizeof(*key));
memcpy(c->key, key, sizeof(*key));
c->data = prog;
if (cache->n_items > cache->size * 1.5) {
if (cache->size < 1000)
rehash(cache);
else
clear_cache(ctx, cache);
}
cache->n_items++;
c->next = cache->items[hash % cache->size];
cache->items[hash % cache->size] = c;
}
static GLuint hash_key( const struct state_key *key )
{
GLuint *ikey = (GLuint *)key;
GLuint hash = 0, i;
/* Make a slightly better attempt at a hash function:
*/
for (i = 0; i < sizeof(*key)/sizeof(*ikey); i++)
{
hash += ikey[i];
hash += (hash << 10);
hash ^= (hash >> 6);
}
return hash;
}
/**
* If _MaintainTexEnvProgram is set we'll generate a fragment program that
* implements the current texture env/combine mode.
* This function generates that program and puts it into effect.
*/
void
_mesa_UpdateTexEnvProgram( GLcontext *ctx )
{
struct state_key key;
GLuint hash;
const struct gl_fragment_program *prev = ctx->FragmentProgram._Current;
ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram);
/* If a conventional fragment program/shader isn't in effect... */
if (!ctx->FragmentProgram._Enabled &&
(!ctx->Shader.CurrentProgram || !ctx->Shader.CurrentProgram->FragmentProgram)) {
struct gl_fragment_program *newProg;
make_state_key(ctx, &key);
hash = hash_key(&key);
newProg = search_cache(&ctx->Texture.env_fp_cache, hash, &key, sizeof(key));
if (!newProg) {
/* create new tex env program */
if (0)
_mesa_printf("Building new texenv proggy for key %x\n", hash);
newProg = (struct gl_fragment_program *)
ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
create_new_program(ctx, &key, newProg);
/* Our ownership of newProg is transferred to the cache */
cache_item(ctx, &ctx->Texture.env_fp_cache, hash, &key, newProg);
}
_mesa_reference_fragprog(ctx, &ctx->FragmentProgram._Current, newProg);
_mesa_reference_fragprog(ctx, &ctx->FragmentProgram._TexEnvProgram, newProg);
}
else {
/* _Current pointer has been updated in update_program */
/* ctx->FragmentProgram._Current = ctx->FragmentProgram.Current; */
}
/* Tell the driver about the change. Could define a new target for
* this?
*/
if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) {
ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB,
(struct gl_program *) ctx->FragmentProgram._Current);
}
}
void _mesa_TexEnvProgramCacheInit( GLcontext *ctx )
{
ctx->Texture.env_fp_cache.ctx = ctx;
ctx->Texture.env_fp_cache.size = 17;
ctx->Texture.env_fp_cache.n_items = 0;
ctx->Texture.env_fp_cache.items = (struct texenvprog_cache_item **)
_mesa_calloc(ctx->Texture.env_fp_cache.size *
sizeof(struct texenvprog_cache_item));
}
void _mesa_TexEnvProgramCacheDestroy( GLcontext *ctx )
{
clear_cache(ctx, &ctx->Texture.env_fp_cache);
_mesa_free(ctx->Texture.env_fp_cache.items);
}