blob: e6eb1e2cd9b4188e32f884d4baa3482add9570ab [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 7.1
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Authors:
* Brian Paul
*/
/**
* The GL texture image functions in teximage.c basically just do
* error checking and data structure allocation. They in turn call
* device driver functions which actually copy/convert/store the user's
* texture image data.
*
* However, most device drivers will be able to use the fallback functions
* in this file. That is, most drivers will have the following bit of
* code:
* ctx->Driver.TexImage1D = _mesa_store_teximage1d;
* ctx->Driver.TexImage2D = _mesa_store_teximage2d;
* ctx->Driver.TexImage3D = _mesa_store_teximage3d;
* etc...
*
* Texture image processing is actually kind of complicated. We have to do:
* Format/type conversions
* pixel unpacking
* pixel transfer (scale, bais, lookup, convolution!, etc)
*
* These functions can handle most everything, including processing full
* images and sub-images.
*/
#include "glheader.h"
#include "bufferobj.h"
#include "colormac.h"
#include "context.h"
#include "convolve.h"
#include "image.h"
#include "macros.h"
#include "mipmap.h"
#include "imports.h"
#include "texcompress.h"
#include "texformat.h"
#include "teximage.h"
#include "texstore.h"
#include "enums.h"
enum {
ZERO = 4,
ONE = 5
};
/**
* Return GL_TRUE if the given image format is one that be converted
* to another format by swizzling.
*/
static GLboolean
can_swizzle(GLenum logicalBaseFormat)
{
switch (logicalBaseFormat) {
case GL_RGBA:
case GL_RGB:
case GL_LUMINANCE_ALPHA:
case GL_INTENSITY:
case GL_ALPHA:
case GL_LUMINANCE:
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_BGR:
case GL_BGRA:
case GL_ABGR_EXT:
return GL_TRUE;
default:
return GL_FALSE;
}
}
enum {
IDX_LUMINANCE = 0,
IDX_ALPHA,
IDX_INTENSITY,
IDX_LUMINANCE_ALPHA,
IDX_RGB,
IDX_RGBA,
IDX_RED,
IDX_GREEN,
IDX_BLUE,
IDX_BGR,
IDX_BGRA,
IDX_ABGR,
MAX_IDX
};
#define MAP1(x) MAP4(x, ZERO, ZERO, ZERO)
#define MAP2(x,y) MAP4(x, y, ZERO, ZERO)
#define MAP3(x,y,z) MAP4(x, y, z, ZERO)
#define MAP4(x,y,z,w) { x, y, z, w, ZERO, ONE }
static const struct {
GLubyte format_idx;
GLubyte to_rgba[6];
GLubyte from_rgba[6];
} mappings[MAX_IDX] =
{
{
IDX_LUMINANCE,
MAP4(0,0,0,ONE),
MAP1(0)
},
{
IDX_ALPHA,
MAP4(ZERO, ZERO, ZERO, 0),
MAP1(3)
},
{
IDX_INTENSITY,
MAP4(0, 0, 0, 0),
MAP1(0),
},
{
IDX_LUMINANCE_ALPHA,
MAP4(0,0,0,1),
MAP2(0,3)
},
{
IDX_RGB,
MAP4(0,1,2,ONE),
MAP3(0,1,2)
},
{
IDX_RGBA,
MAP4(0,1,2,3),
MAP4(0,1,2,3),
},
{
IDX_RED,
MAP4(0, ZERO, ZERO, ONE),
MAP1(0),
},
{
IDX_GREEN,
MAP4(ZERO, 0, ZERO, ONE),
MAP1(1),
},
{
IDX_BLUE,
MAP4(ZERO, ZERO, 0, ONE),
MAP1(2),
},
{
IDX_BGR,
MAP4(2,1,0,ONE),
MAP3(2,1,0)
},
{
IDX_BGRA,
MAP4(2,1,0,3),
MAP4(2,1,0,3)
},
{
IDX_ABGR,
MAP4(3,2,1,0),
MAP4(3,2,1,0)
},
};
/**
* Convert a GL image format enum to an IDX_* value (see above).
*/
static int
get_map_idx(GLenum value)
{
switch (value) {
case GL_LUMINANCE: return IDX_LUMINANCE;
case GL_ALPHA: return IDX_ALPHA;
case GL_INTENSITY: return IDX_INTENSITY;
case GL_LUMINANCE_ALPHA: return IDX_LUMINANCE_ALPHA;
case GL_RGB: return IDX_RGB;
case GL_RGBA: return IDX_RGBA;
case GL_RED: return IDX_RED;
case GL_GREEN: return IDX_GREEN;
case GL_BLUE: return IDX_BLUE;
case GL_BGR: return IDX_BGR;
case GL_BGRA: return IDX_BGRA;
case GL_ABGR_EXT: return IDX_ABGR;
default:
_mesa_problem(NULL, "Unexpected inFormat");
return 0;
}
}
/**
* When promoting texture formats (see below) we need to compute the
* mapping of dest components back to source components.
* This function does that.
* \param inFormat the incoming format of the texture
* \param outFormat the final texture format
* \return map[6] a full 6-component map
*/
static void
compute_component_mapping(GLenum inFormat, GLenum outFormat,
GLubyte *map)
{
const int inFmt = get_map_idx(inFormat);
const int outFmt = get_map_idx(outFormat);
const GLubyte *in2rgba = mappings[inFmt].to_rgba;
const GLubyte *rgba2out = mappings[outFmt].from_rgba;
int i;
for (i = 0; i < 4; i++)
map[i] = in2rgba[rgba2out[i]];
map[ZERO] = ZERO;
map[ONE] = ONE;
/*
_mesa_printf("from %x/%s to %x/%s map %d %d %d %d %d %d\n",
inFormat, _mesa_lookup_enum_by_nr(inFormat),
outFormat, _mesa_lookup_enum_by_nr(outFormat),
map[0],
map[1],
map[2],
map[3],
map[4],
map[5]);
*/
}
/**
* Make a temporary (color) texture image with GLfloat components.
* Apply all needed pixel unpacking and pixel transfer operations.
* Note that there are both logicalBaseFormat and textureBaseFormat parameters.
* Suppose the user specifies GL_LUMINANCE as the internal texture format
* but the graphics hardware doesn't support luminance textures. So, might
* use an RGB hardware format instead.
* If logicalBaseFormat != textureBaseFormat we have some extra work to do.
*
* \param ctx the rendering context
* \param dims image dimensions: 1, 2 or 3
* \param logicalBaseFormat basic texture derived from the user's
* internal texture format value
* \param textureBaseFormat the actual basic format of the texture
* \param srcWidth source image width
* \param srcHeight source image height
* \param srcDepth source image depth
* \param srcFormat source image format
* \param srcType source image type
* \param srcAddr source image address
* \param srcPacking source image pixel packing
* \return resulting image with format = textureBaseFormat and type = GLfloat.
*/
static GLfloat *
make_temp_float_image(GLcontext *ctx, GLuint dims,
GLenum logicalBaseFormat,
GLenum textureBaseFormat,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
GLenum srcFormat, GLenum srcType,
const GLvoid *srcAddr,
const struct gl_pixelstore_attrib *srcPacking)
{
GLuint transferOps = ctx->_ImageTransferState;
GLfloat *tempImage;
ASSERT(dims >= 1 && dims <= 3);
ASSERT(logicalBaseFormat == GL_RGBA ||
logicalBaseFormat == GL_RGB ||
logicalBaseFormat == GL_LUMINANCE_ALPHA ||
logicalBaseFormat == GL_LUMINANCE ||
logicalBaseFormat == GL_ALPHA ||
logicalBaseFormat == GL_INTENSITY ||
logicalBaseFormat == GL_COLOR_INDEX ||
logicalBaseFormat == GL_DEPTH_COMPONENT);
ASSERT(textureBaseFormat == GL_RGBA ||
textureBaseFormat == GL_RGB ||
textureBaseFormat == GL_LUMINANCE_ALPHA ||
textureBaseFormat == GL_LUMINANCE ||
textureBaseFormat == GL_ALPHA ||
textureBaseFormat == GL_INTENSITY ||
textureBaseFormat == GL_COLOR_INDEX ||
textureBaseFormat == GL_DEPTH_COMPONENT);
/* conventional color image */
if ((dims == 1 && ctx->Pixel.Convolution1DEnabled) ||
(dims >= 2 && ctx->Pixel.Convolution2DEnabled) ||
(dims >= 2 && ctx->Pixel.Separable2DEnabled)) {
/* need image convolution */
const GLuint preConvTransferOps
= (transferOps & IMAGE_PRE_CONVOLUTION_BITS) | IMAGE_CLAMP_BIT;
const GLuint postConvTransferOps
= (transferOps & IMAGE_POST_CONVOLUTION_BITS) | IMAGE_CLAMP_BIT;
GLint img, row;
GLint convWidth, convHeight;
GLfloat *convImage;
/* pre-convolution image buffer (3D) */
tempImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * srcDepth
* 4 * sizeof(GLfloat));
if (!tempImage)
return NULL;
/* post-convolution image buffer (2D) */
convImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight
* 4 * sizeof(GLfloat));
if (!convImage) {
_mesa_free(tempImage);
return NULL;
}
/* loop over 3D image slices */
for (img = 0; img < srcDepth; img++) {
GLfloat *dst = tempImage + img * (srcWidth * srcHeight * 4);
/* unpack and do transfer ops up to convolution */
for (row = 0; row < srcHeight; row++) {
const GLvoid *src = _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight,
srcFormat, srcType, img, row, 0);
_mesa_unpack_color_span_float(ctx, srcWidth, GL_RGBA, dst,
srcFormat, srcType, src,
srcPacking,
preConvTransferOps);
dst += srcWidth * 4;
}
/* size after optional convolution */
convWidth = srcWidth;
convHeight = srcHeight;
/* do convolution */
{
GLfloat *src = tempImage + img * (srcWidth * srcHeight * 4);
if (dims == 1) {
ASSERT(ctx->Pixel.Convolution1DEnabled);
_mesa_convolve_1d_image(ctx, &convWidth, src, convImage);
}
else {
if (ctx->Pixel.Convolution2DEnabled) {
_mesa_convolve_2d_image(ctx, &convWidth, &convHeight,
src, convImage);
}
else {
ASSERT(ctx->Pixel.Separable2DEnabled);
_mesa_convolve_sep_image(ctx, &convWidth, &convHeight,
src, convImage);
}
}
}
/* do post-convolution transfer and pack into tempImage */
{
const GLint logComponents
= _mesa_components_in_format(logicalBaseFormat);
const GLfloat *src = convImage;
GLfloat *dst = tempImage + img * (convWidth * convHeight * 4);
for (row = 0; row < convHeight; row++) {
_mesa_pack_rgba_span_float(ctx, convWidth,
(GLfloat (*)[4]) src,
logicalBaseFormat, GL_FLOAT,
dst, &ctx->DefaultPacking,
postConvTransferOps);
src += convWidth * 4;
dst += convWidth * logComponents;
}
}
} /* loop over 3D image slices */
_mesa_free(convImage);
/* might need these below */
srcWidth = convWidth;
srcHeight = convHeight;
}
else {
/* no convolution */
const GLint components = _mesa_components_in_format(logicalBaseFormat);
const GLint srcStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLfloat *dst;
GLint img, row;
tempImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * srcDepth
* components * sizeof(GLfloat));
if (!tempImage)
return NULL;
dst = tempImage;
for (img = 0; img < srcDepth; img++) {
const GLubyte *src
= (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr,
srcWidth, srcHeight,
srcFormat, srcType,
img, 0, 0);
for (row = 0; row < srcHeight; row++) {
_mesa_unpack_color_span_float(ctx, srcWidth, logicalBaseFormat,
dst, srcFormat, srcType, src,
srcPacking, transferOps);
dst += srcWidth * components;
src += srcStride;
}
}
}
if (logicalBaseFormat != textureBaseFormat) {
/* more work */
GLint texComponents = _mesa_components_in_format(textureBaseFormat);
GLint logComponents = _mesa_components_in_format(logicalBaseFormat);
GLfloat *newImage;
GLint i, n;
GLubyte map[6];
/* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */
ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA ||
textureBaseFormat == GL_LUMINANCE_ALPHA);
/* The actual texture format should have at least as many components
* as the logical texture format.
*/
ASSERT(texComponents >= logComponents);
newImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * srcDepth
* texComponents * sizeof(GLfloat));
if (!newImage) {
_mesa_free(tempImage);
return NULL;
}
compute_component_mapping(logicalBaseFormat, textureBaseFormat, map);
n = srcWidth * srcHeight * srcDepth;
for (i = 0; i < n; i++) {
GLint k;
for (k = 0; k < texComponents; k++) {
GLint j = map[k];
if (j == ZERO)
newImage[i * texComponents + k] = 0.0F;
else if (j == ONE)
newImage[i * texComponents + k] = 1.0F;
else
newImage[i * texComponents + k] = tempImage[i * logComponents + j];
}
}
_mesa_free(tempImage);
tempImage = newImage;
}
return tempImage;
}
/**
* Make a temporary (color) texture image with GLchan components.
* Apply all needed pixel unpacking and pixel transfer operations.
* Note that there are both logicalBaseFormat and textureBaseFormat parameters.
* Suppose the user specifies GL_LUMINANCE as the internal texture format
* but the graphics hardware doesn't support luminance textures. So, might
* use an RGB hardware format instead.
* If logicalBaseFormat != textureBaseFormat we have some extra work to do.
*
* \param ctx the rendering context
* \param dims image dimensions: 1, 2 or 3
* \param logicalBaseFormat basic texture derived from the user's
* internal texture format value
* \param textureBaseFormat the actual basic format of the texture
* \param srcWidth source image width
* \param srcHeight source image height
* \param srcDepth source image depth
* \param srcFormat source image format
* \param srcType source image type
* \param srcAddr source image address
* \param srcPacking source image pixel packing
* \return resulting image with format = textureBaseFormat and type = GLchan.
*/
GLchan *
_mesa_make_temp_chan_image(GLcontext *ctx, GLuint dims,
GLenum logicalBaseFormat,
GLenum textureBaseFormat,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
GLenum srcFormat, GLenum srcType,
const GLvoid *srcAddr,
const struct gl_pixelstore_attrib *srcPacking)
{
GLuint transferOps = ctx->_ImageTransferState;
const GLint components = _mesa_components_in_format(logicalBaseFormat);
GLboolean freeSrcImage = GL_FALSE;
GLint img, row;
GLchan *tempImage, *dst;
ASSERT(dims >= 1 && dims <= 3);
ASSERT(logicalBaseFormat == GL_RGBA ||
logicalBaseFormat == GL_RGB ||
logicalBaseFormat == GL_LUMINANCE_ALPHA ||
logicalBaseFormat == GL_LUMINANCE ||
logicalBaseFormat == GL_ALPHA ||
logicalBaseFormat == GL_INTENSITY);
ASSERT(textureBaseFormat == GL_RGBA ||
textureBaseFormat == GL_RGB ||
textureBaseFormat == GL_LUMINANCE_ALPHA ||
textureBaseFormat == GL_LUMINANCE ||
textureBaseFormat == GL_ALPHA ||
textureBaseFormat == GL_INTENSITY);
if ((dims == 1 && ctx->Pixel.Convolution1DEnabled) ||
(dims >= 2 && ctx->Pixel.Convolution2DEnabled) ||
(dims >= 2 && ctx->Pixel.Separable2DEnabled)) {
/* get convolved image */
GLfloat *convImage = make_temp_float_image(ctx, dims,
logicalBaseFormat,
logicalBaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType,
srcAddr, srcPacking);
if (!convImage)
return NULL;
/* the convolved image is our new source image */
srcAddr = convImage;
srcFormat = logicalBaseFormat;
srcType = GL_FLOAT;
srcPacking = &ctx->DefaultPacking;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
transferOps = 0;
freeSrcImage = GL_TRUE;
}
/* unpack and transfer the source image */
tempImage = (GLchan *) _mesa_malloc(srcWidth * srcHeight * srcDepth
* components * sizeof(GLchan));
if (!tempImage)
return NULL;
dst = tempImage;
for (img = 0; img < srcDepth; img++) {
const GLint srcStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat,
srcType);
const GLubyte *src
= (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr,
srcWidth, srcHeight,
srcFormat, srcType,
img, 0, 0);
for (row = 0; row < srcHeight; row++) {
_mesa_unpack_color_span_chan(ctx, srcWidth, logicalBaseFormat, dst,
srcFormat, srcType, src, srcPacking,
transferOps);
dst += srcWidth * components;
src += srcStride;
}
}
/* If we made a temporary image for convolution, free it here */
if (freeSrcImage) {
_mesa_free((void *) srcAddr);
}
if (logicalBaseFormat != textureBaseFormat) {
/* one more conversion step */
GLint texComponents = _mesa_components_in_format(textureBaseFormat);
GLint logComponents = _mesa_components_in_format(logicalBaseFormat);
GLchan *newImage;
GLint i, n;
GLubyte map[6];
/* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */
ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA ||
textureBaseFormat == GL_LUMINANCE_ALPHA);
/* The actual texture format should have at least as many components
* as the logical texture format.
*/
ASSERT(texComponents >= logComponents);
newImage = (GLchan *) _mesa_malloc(srcWidth * srcHeight * srcDepth
* texComponents * sizeof(GLchan));
if (!newImage) {
_mesa_free(tempImage);
return NULL;
}
compute_component_mapping(logicalBaseFormat, textureBaseFormat, map);
n = srcWidth * srcHeight * srcDepth;
for (i = 0; i < n; i++) {
GLint k;
for (k = 0; k < texComponents; k++) {
GLint j = map[k];
if (j == ZERO)
newImage[i * texComponents + k] = 0;
else if (j == ONE)
newImage[i * texComponents + k] = CHAN_MAX;
else
newImage[i * texComponents + k] = tempImage[i * logComponents + j];
}
}
_mesa_free(tempImage);
tempImage = newImage;
}
return tempImage;
}
/**
* Copy GLubyte pixels from <src> to <dst> with swizzling.
* \param dst destination pixels
* \param dstComponents number of color components in destination pixels
* \param src source pixels
* \param srcComponents number of color components in source pixels
* \param map the swizzle mapping. map[X] says where to find the X component
* in the source image's pixels. For example, if the source image
* is GL_BGRA and X = red, map[0] yields 2.
* \param count number of pixels to copy/swizzle.
*/
static void
swizzle_copy(GLubyte *dst, GLuint dstComponents, const GLubyte *src,
GLuint srcComponents, const GLubyte *map, GLuint count)
{
#define SWZ_CPY(dst, src, count, dstComps, srcComps) \
do { \
GLuint i; \
for (i = 0; i < count; i++) { \
GLuint j; \
if (srcComps == 4) { \
COPY_4UBV(tmp, src); \
} \
else { \
for (j = 0; j < srcComps; j++) { \
tmp[j] = src[j]; \
} \
} \
src += srcComps; \
for (j = 0; j < dstComps; j++) { \
dst[j] = tmp[map[j]]; \
} \
dst += dstComps; \
} \
} while (0)
GLubyte tmp[6];
tmp[ZERO] = 0x0;
tmp[ONE] = 0xff;
ASSERT(srcComponents <= 4);
ASSERT(dstComponents <= 4);
switch (dstComponents) {
case 4:
switch (srcComponents) {
case 4:
SWZ_CPY(dst, src, count, 4, 4);
break;
case 3:
SWZ_CPY(dst, src, count, 4, 3);
break;
case 2:
SWZ_CPY(dst, src, count, 4, 2);
break;
case 1:
SWZ_CPY(dst, src, count, 4, 1);
break;
default:
;
}
break;
case 3:
switch (srcComponents) {
case 4:
SWZ_CPY(dst, src, count, 3, 4);
break;
case 3:
SWZ_CPY(dst, src, count, 3, 3);
break;
case 2:
SWZ_CPY(dst, src, count, 3, 2);
break;
case 1:
SWZ_CPY(dst, src, count, 3, 1);
break;
default:
;
}
break;
case 2:
switch (srcComponents) {
case 4:
SWZ_CPY(dst, src, count, 2, 4);
break;
case 3:
SWZ_CPY(dst, src, count, 2, 3);
break;
case 2:
SWZ_CPY(dst, src, count, 2, 2);
break;
case 1:
SWZ_CPY(dst, src, count, 2, 1);
break;
default:
;
}
break;
case 1:
switch (srcComponents) {
case 4:
SWZ_CPY(dst, src, count, 1, 4);
break;
case 3:
SWZ_CPY(dst, src, count, 1, 3);
break;
case 2:
SWZ_CPY(dst, src, count, 1, 2);
break;
case 1:
SWZ_CPY(dst, src, count, 1, 1);
break;
default:
;
}
break;
default:
;
}
#undef SWZ_CPY
}
static const GLubyte map_identity[6] = { 0, 1, 2, 3, ZERO, ONE };
static const GLubyte map_3210[6] = { 3, 2, 1, 0, ZERO, ONE };
/* Deal with the _REV input types:
*/
static const GLubyte *
type_mapping( GLenum srcType )
{
switch (srcType) {
case GL_UNSIGNED_BYTE:
return map_identity;
case GL_UNSIGNED_INT_8_8_8_8:
return _mesa_little_endian() ? map_3210 : map_identity;
case GL_UNSIGNED_INT_8_8_8_8_REV:
return _mesa_little_endian() ? map_identity : map_3210;
default:
return NULL;
}
}
/* Mapping required if input type is
*/
static const GLubyte *
byteswap_mapping( GLboolean swapBytes,
GLenum srcType )
{
if (!swapBytes)
return map_identity;
switch (srcType) {
case GL_UNSIGNED_BYTE:
return map_identity;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
return map_3210;
default:
return NULL;
}
}
/**
* Transfer a GLubyte texture image with component swizzling.
*/
static void
_mesa_swizzle_ubyte_image(GLcontext *ctx,
GLuint dimensions,
GLenum srcFormat,
GLenum srcType,
GLenum baseInternalFormat,
const GLubyte *rgba2dst,
GLuint dstComponents,
GLvoid *dstAddr,
GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
GLint dstRowStride,
const GLuint *dstImageOffsets,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
const GLvoid *srcAddr,
const struct gl_pixelstore_attrib *srcPacking )
{
GLint srcComponents = _mesa_components_in_format(srcFormat);
const GLubyte *srctype2ubyte, *swap;
GLubyte map[4], src2base[6], base2rgba[6];
GLint i;
const GLint srcRowStride =
_mesa_image_row_stride(srcPacking, srcWidth,
srcFormat, GL_UNSIGNED_BYTE);
const GLint srcImageStride
= _mesa_image_image_stride(srcPacking, srcWidth, srcHeight, srcFormat,
GL_UNSIGNED_BYTE);
const GLubyte *srcImage
= (const GLubyte *) _mesa_image_address(dimensions, srcPacking, srcAddr,
srcWidth, srcHeight, srcFormat,
GL_UNSIGNED_BYTE, 0, 0, 0);
(void) ctx;
/* Translate from src->baseInternal->GL_RGBA->dst. This will
* correctly deal with RGBA->RGB->RGBA conversions where the final
* A value must be 0xff regardless of the incoming alpha values.
*/
compute_component_mapping(srcFormat, baseInternalFormat, src2base);
compute_component_mapping(baseInternalFormat, GL_RGBA, base2rgba);
swap = byteswap_mapping(srcPacking->SwapBytes, srcType);
srctype2ubyte = type_mapping(srcType);
for (i = 0; i < 4; i++)
map[i] = srctype2ubyte[swap[src2base[base2rgba[rgba2dst[i]]]]];
/* _mesa_printf("map %d %d %d %d\n", map[0], map[1], map[2], map[3]); */
if (srcRowStride == dstRowStride &&
srcComponents == dstComponents &&
srcRowStride == srcWidth * srcComponents &&
dimensions < 3) {
/* 1 and 2D images only */
GLubyte *dstImage = (GLubyte *) dstAddr
+ dstYoffset * dstRowStride
+ dstXoffset * dstComponents;
swizzle_copy(dstImage, dstComponents, srcImage, srcComponents, map,
srcWidth * srcHeight);
}
else {
GLint img, row;
for (img = 0; img < srcDepth; img++) {
const GLubyte *srcRow = srcImage;
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstComponents
+ dstYoffset * dstRowStride
+ dstXoffset * dstComponents;
for (row = 0; row < srcHeight; row++) {
swizzle_copy(dstRow, dstComponents, srcRow, srcComponents, map, srcWidth);
dstRow += dstRowStride;
srcRow += srcRowStride;
}
srcImage += srcImageStride;
}
}
}
/**
* Teximage storage routine for when a simple memcpy will do.
* No pixel transfer operations or special texel encodings allowed.
* 1D, 2D and 3D images supported.
*/
static void
memcpy_texture(GLcontext *ctx,
GLuint dimensions,
const struct gl_texture_format *dstFormat,
GLvoid *dstAddr,
GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
GLint dstRowStride,
const GLuint *dstImageOffsets,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
GLenum srcFormat, GLenum srcType,
const GLvoid *srcAddr,
const struct gl_pixelstore_attrib *srcPacking)
{
const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth,
srcFormat, srcType);
const GLint srcImageStride = _mesa_image_image_stride(srcPacking,
srcWidth, srcHeight, srcFormat, srcType);
const GLubyte *srcImage = (const GLubyte *) _mesa_image_address(dimensions,
srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, 0, 0, 0);
const GLint bytesPerRow = srcWidth * dstFormat->TexelBytes;
#if 0
/* XXX update/re-enable for dstImageOffsets array */
const GLint bytesPerImage = srcHeight * bytesPerRow;
const GLint bytesPerTexture = srcDepth * bytesPerImage;
GLubyte *dstImage = (GLubyte *) dstAddr
+ dstZoffset * dstImageStride
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
if (dstRowStride == srcRowStride &&
dstRowStride == bytesPerRow &&
((dstImageStride == srcImageStride &&
dstImageStride == bytesPerImage) ||
(srcDepth == 1))) {
/* one big memcpy */
ctx->Driver.TextureMemCpy(dstImage, srcImage, bytesPerTexture);
}
else
{
GLint img, row;
for (img = 0; img < srcDepth; img++) {
const GLubyte *srcRow = srcImage;
GLubyte *dstRow = dstImage;
for (row = 0; row < srcHeight; row++) {
ctx->Driver.TextureMemCpy(dstRow, srcRow, bytesPerRow);
dstRow += dstRowStride;
srcRow += srcRowStride;
}
srcImage += srcImageStride;
dstImage += dstImageStride;
}
}
#endif
GLint img, row;
for (img = 0; img < srcDepth; img++) {
const GLubyte *srcRow = srcImage;
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
ctx->Driver.TextureMemCpy(dstRow, srcRow, bytesPerRow);
dstRow += dstRowStride;
srcRow += srcRowStride;
}
srcImage += srcImageStride;
}
}
/**
* Store an image in any of the formats:
* _mesa_texformat_rgba
* _mesa_texformat_rgb
* _mesa_texformat_alpha
* _mesa_texformat_luminance
* _mesa_texformat_luminance_alpha
* _mesa_texformat_intensity
*
*/
GLboolean
_mesa_texstore_rgba(TEXSTORE_PARAMS)
{
const GLint components = _mesa_components_in_format(baseInternalFormat);
ASSERT(dstFormat == &_mesa_texformat_rgba ||
dstFormat == &_mesa_texformat_rgb ||
dstFormat == &_mesa_texformat_alpha ||
dstFormat == &_mesa_texformat_luminance ||
dstFormat == &_mesa_texformat_luminance_alpha ||
dstFormat == &_mesa_texformat_intensity);
ASSERT(baseInternalFormat == GL_RGBA ||
baseInternalFormat == GL_RGB ||
baseInternalFormat == GL_ALPHA ||
baseInternalFormat == GL_LUMINANCE ||
baseInternalFormat == GL_LUMINANCE_ALPHA ||
baseInternalFormat == GL_INTENSITY);
ASSERT(dstFormat->TexelBytes == components * sizeof(GLchan));
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == srcFormat &&
srcType == CHAN_TYPE) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_rgb &&
srcFormat == GL_RGBA &&
srcType == CHAN_TYPE) {
/* extract RGB from RGBA */
GLint img, row, col;
for (img = 0; img < srcDepth; img++) {
GLchan *dstImage = (GLchan *)
((GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes);
const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLchan *srcRow = (GLchan *) _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0);
GLchan *dstRow = dstImage;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + RCOMP] = srcRow[col * 4 + RCOMP];
dstRow[col * 3 + GCOMP] = srcRow[col * 4 + GCOMP];
dstRow[col * 3 + BCOMP] = srcRow[col * 4 + BCOMP];
}
dstRow += dstRowStride / sizeof(GLchan);
srcRow = (GLchan *) ((GLubyte *) srcRow + srcRowStride);
}
}
}
else if (!ctx->_ImageTransferState &&
CHAN_TYPE == GL_UNSIGNED_BYTE &&
(srcType == GL_UNSIGNED_BYTE ||
srcType == GL_UNSIGNED_INT_8_8_8_8 ||
srcType == GL_UNSIGNED_INT_8_8_8_8_REV) &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
const GLubyte *dstmap;
GLuint components;
/* dstmap - how to swizzle from RGBA to dst format:
*/
if (dstFormat == &_mesa_texformat_rgba) {
dstmap = mappings[IDX_RGBA].from_rgba;
components = 4;
}
else if (dstFormat == &_mesa_texformat_rgb) {
dstmap = mappings[IDX_RGB].from_rgba;
components = 3;
}
else if (dstFormat == &_mesa_texformat_alpha) {
dstmap = mappings[IDX_ALPHA].from_rgba;
components = 1;
}
else if (dstFormat == &_mesa_texformat_luminance) {
dstmap = mappings[IDX_LUMINANCE].from_rgba;
components = 1;
}
else if (dstFormat == &_mesa_texformat_luminance_alpha) {
dstmap = mappings[IDX_LUMINANCE_ALPHA].from_rgba;
components = 2;
}
else if (dstFormat == &_mesa_texformat_intensity) {
dstmap = mappings[IDX_INTENSITY].from_rgba;
components = 1;
}
else {
_mesa_problem(ctx, "Unexpected dstFormat in _mesa_texstore_rgba");
return GL_FALSE;
}
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, components,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint bytesPerRow;
GLint img, row;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
bytesPerRow = srcWidth * components * sizeof(GLchan);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
_mesa_memcpy(dstRow, src, bytesPerRow);
dstRow += dstRowStride;
src += srcWidth * components;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
/**
* Store a 32-bit integer depth component texture image.
*/
GLboolean
_mesa_texstore_z32(TEXSTORE_PARAMS)
{
const GLuint depthScale = 0xffffffff;
(void) dims;
ASSERT(dstFormat == &_mesa_texformat_z32);
ASSERT(dstFormat->TexelBytes == sizeof(GLuint));
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == GL_DEPTH_COMPONENT &&
srcFormat == GL_DEPTH_COMPONENT &&
srcType == GL_UNSIGNED_INT) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
GLint img, row;
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
const GLvoid *src = _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
_mesa_unpack_depth_span(ctx, srcWidth,
GL_UNSIGNED_INT, (GLuint *) dstRow,
depthScale, srcType, src, srcPacking);
dstRow += dstRowStride;
}
}
}
return GL_TRUE;
}
#define STRIDE_3D 0
/**
* Store a 16-bit integer depth component texture image.
*/
GLboolean
_mesa_texstore_z16(TEXSTORE_PARAMS)
{
const GLuint depthScale = 0xffff;
(void) dims;
ASSERT(dstFormat == &_mesa_texformat_z16);
ASSERT(dstFormat->TexelBytes == sizeof(GLushort));
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == GL_DEPTH_COMPONENT &&
srcFormat == GL_DEPTH_COMPONENT &&
srcType == GL_UNSIGNED_SHORT) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
GLint img, row;
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
const GLvoid *src = _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
GLushort *dst16 = (GLushort *) dstRow;
_mesa_unpack_depth_span(ctx, srcWidth,
GL_UNSIGNED_SHORT, dst16, depthScale,
srcType, src, srcPacking);
dstRow += dstRowStride;
}
}
}
return GL_TRUE;
}
/**
* Store an rgb565 or rgb565_rev texture image.
*/
GLboolean
_mesa_texstore_rgb565(TEXSTORE_PARAMS)
{
ASSERT(dstFormat == &_mesa_texformat_rgb565 ||
dstFormat == &_mesa_texformat_rgb565_rev);
ASSERT(dstFormat->TexelBytes == 2);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_rgb565 &&
baseInternalFormat == GL_RGB &&
srcFormat == GL_RGB &&
srcType == GL_UNSIGNED_SHORT_5_6_5) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == GL_RGB &&
srcFormat == GL_RGB &&
srcType == GL_UNSIGNED_BYTE &&
dims == 2) {
/* do optimized tex store */
const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth,
srcFormat, srcType);
const GLubyte *src = (const GLubyte *)
_mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight,
srcFormat, srcType, 0, 0, 0);
GLubyte *dst = (GLubyte *) dstAddr
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
GLint row, col;
for (row = 0; row < srcHeight; row++) {
const GLubyte *srcUB = (const GLubyte *) src;
GLushort *dstUS = (GLushort *) dst;
/* check for byteswapped format */
if (dstFormat == &_mesa_texformat_rgb565) {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_565( srcUB[0], srcUB[1], srcUB[2] );
srcUB += 3;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_565_REV( srcUB[0], srcUB[1], srcUB[2] );
srcUB += 3;
}
}
dst += dstRowStride;
src += srcRowStride;
}
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLushort *dstUS = (GLushort *) dstRow;
/* check for byteswapped format */
if (dstFormat == &_mesa_texformat_rgb565) {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_565( CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 3;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_565_REV( CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 3;
}
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
/**
* Store a texture in MESA_FORMAT_RGBA8888 or MESA_FORMAT_RGBA8888_REV.
*/
GLboolean
_mesa_texstore_rgba8888(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
ASSERT(dstFormat == &_mesa_texformat_rgba8888 ||
dstFormat == &_mesa_texformat_rgba8888_rev);
ASSERT(dstFormat->TexelBytes == 4);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_rgba8888 &&
baseInternalFormat == GL_RGBA &&
((srcFormat == GL_RGBA && srcType == GL_UNSIGNED_INT_8_8_8_8) ||
(srcFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE && !littleEndian) ||
(srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_INT_8_8_8_8_REV) ||
(srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_BYTE && littleEndian))) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_rgba8888_rev &&
baseInternalFormat == GL_RGBA &&
((srcFormat == GL_RGBA && srcType == GL_UNSIGNED_INT_8_8_8_8_REV) ||
(srcFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE && littleEndian) ||
(srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_INT_8_8_8_8) ||
(srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_BYTE && !littleEndian))) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
(srcType == GL_UNSIGNED_BYTE ||
srcType == GL_UNSIGNED_INT_8_8_8_8 ||
srcType == GL_UNSIGNED_INT_8_8_8_8_REV) &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
GLubyte dstmap[4];
/* dstmap - how to swizzle from RGBA to dst format:
*/
if ((littleEndian && dstFormat == &_mesa_texformat_rgba8888) ||
(!littleEndian && dstFormat == &_mesa_texformat_rgba8888_rev)) {
dstmap[3] = 0;
dstmap[2] = 1;
dstmap[1] = 2;
dstmap[0] = 3;
}
else {
dstmap[3] = 3;
dstmap[2] = 2;
dstmap[1] = 1;
dstmap[0] = 0;
}
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, 4,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLuint *dstUI = (GLuint *) dstRow;
if (dstFormat == &_mesa_texformat_rgba8888) {
for (col = 0; col < srcWidth; col++) {
dstUI[col] = PACK_COLOR_8888( CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]),
CHAN_TO_UBYTE(src[ACOMP]) );
src += 4;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstUI[col] = PACK_COLOR_8888_REV( CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]),
CHAN_TO_UBYTE(src[ACOMP]) );
src += 4;
}
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_argb8888(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
ASSERT(dstFormat == &_mesa_texformat_argb8888 ||
dstFormat == &_mesa_texformat_argb8888_rev);
ASSERT(dstFormat->TexelBytes == 4);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb8888 &&
baseInternalFormat == GL_RGBA &&
srcFormat == GL_BGRA &&
((srcType == GL_UNSIGNED_BYTE && littleEndian) ||
srcType == GL_UNSIGNED_INT_8_8_8_8_REV)) {
/* simple memcpy path (little endian) */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb8888_rev &&
baseInternalFormat == GL_RGBA &&
srcFormat == GL_BGRA &&
((srcType == GL_UNSIGNED_BYTE && !littleEndian) ||
srcType == GL_UNSIGNED_INT_8_8_8_8)) {
/* simple memcpy path (big endian) */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb8888 &&
srcFormat == GL_RGB &&
(baseInternalFormat == GL_RGBA ||
baseInternalFormat == GL_RGB) &&
srcType == GL_UNSIGNED_BYTE) {
int img, row, col;
for (img = 0; img < srcDepth; img++) {
const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0);
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLuint *d4 = (GLuint *) dstRow;
for (col = 0; col < srcWidth; col++) {
d4[col] = ((0xff << 24) |
(srcRow[col * 3 + RCOMP] << 16) |
(srcRow[col * 3 + GCOMP] << 8) |
(srcRow[col * 3 + BCOMP] << 0));
}
dstRow += dstRowStride;
srcRow += srcRowStride;
}
}
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb8888 &&
srcFormat == GL_RGBA &&
baseInternalFormat == GL_RGBA &&
srcType == GL_UNSIGNED_BYTE &&
littleEndian) {
/* same as above case, but src data has alpha too */
GLint img, row, col;
/* For some reason, streaming copies to write-combined regions
* are extremely sensitive to the characteristics of how the
* source data is retrieved. By reordering the source reads to
* be in-order, the speed of this operation increases by half.
* Strangely the same isn't required for the RGB path, above.
*/
for (img = 0; img < srcDepth; img++) {
const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0);
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLuint *d4 = (GLuint *) dstRow;
for (col = 0; col < srcWidth; col++) {
d4[col] = ((srcRow[col * 4 + ACOMP] << 24) |
(srcRow[col * 4 + RCOMP] << 16) |
(srcRow[col * 4 + GCOMP] << 8) |
(srcRow[col * 4 + BCOMP] << 0));
}
dstRow += dstRowStride;
srcRow += srcRowStride;
}
}
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb8888 &&
srcFormat == GL_RGBA &&
baseInternalFormat == GL_RGBA &&
srcType == GL_UNSIGNED_BYTE) {
GLint img, row, col;
for (img = 0; img < srcDepth; img++) {
const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0);
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 4 + 0] = srcRow[col * 4 + BCOMP];
dstRow[col * 4 + 1] = srcRow[col * 4 + GCOMP];
dstRow[col * 4 + 2] = srcRow[col * 4 + RCOMP];
dstRow[col * 4 + 3] = srcRow[col * 4 + ACOMP];
}
dstRow += dstRowStride;
srcRow += srcRowStride;
}
}
}
else if (!ctx->_ImageTransferState &&
(srcType == GL_UNSIGNED_BYTE ||
srcType == GL_UNSIGNED_INT_8_8_8_8 ||
srcType == GL_UNSIGNED_INT_8_8_8_8_REV) &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
GLubyte dstmap[4];
/* dstmap - how to swizzle from RGBA to dst format:
*/
if ((littleEndian && dstFormat == &_mesa_texformat_argb8888) ||
(!littleEndian && dstFormat == &_mesa_texformat_argb8888_rev)) {
dstmap[3] = 3; /* alpha */
dstmap[2] = 0; /* red */
dstmap[1] = 1; /* green */
dstmap[0] = 2; /* blue */
}
else {
assert((littleEndian && dstFormat == &_mesa_texformat_argb8888_rev) ||
(!littleEndian && dstFormat == &_mesa_texformat_argb8888));
dstmap[3] = 2;
dstmap[2] = 1;
dstmap[1] = 0;
dstmap[0] = 3;
}
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, 4,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLuint *dstUI = (GLuint *) dstRow;
if (dstFormat == &_mesa_texformat_argb8888) {
for (col = 0; col < srcWidth; col++) {
dstUI[col] = PACK_COLOR_8888( CHAN_TO_UBYTE(src[ACOMP]),
CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 4;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstUI[col] = PACK_COLOR_8888_REV( CHAN_TO_UBYTE(src[ACOMP]),
CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 4;
}
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_rgb888(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
ASSERT(dstFormat == &_mesa_texformat_rgb888);
ASSERT(dstFormat->TexelBytes == 3);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == GL_RGB &&
srcFormat == GL_BGR &&
srcType == GL_UNSIGNED_BYTE &&
littleEndian) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
srcFormat == GL_RGBA &&
srcType == GL_UNSIGNED_BYTE) {
/* extract RGB from RGBA */
GLint img, row, col;
for (img = 0; img < srcDepth; img++) {
const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0);
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + 0] = srcRow[col * 4 + BCOMP];
dstRow[col * 3 + 1] = srcRow[col * 4 + GCOMP];
dstRow[col * 3 + 2] = srcRow[col * 4 + RCOMP];
}
dstRow += dstRowStride;
srcRow += srcRowStride;
}
}
}
else if (!ctx->_ImageTransferState &&
srcType == GL_UNSIGNED_BYTE &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
GLubyte dstmap[4];
/* dstmap - how to swizzle from RGBA to dst format:
*/
dstmap[0] = 2;
dstmap[1] = 1;
dstmap[2] = 0;
dstmap[3] = ONE; /* ? */
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, 3,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = (const GLchan *) tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
#if 0
if (littleEndian) {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + 0] = CHAN_TO_UBYTE(src[RCOMP]);
dstRow[col * 3 + 1] = CHAN_TO_UBYTE(src[GCOMP]);
dstRow[col * 3 + 2] = CHAN_TO_UBYTE(src[BCOMP]);
srcUB += 3;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + 0] = srcUB[BCOMP];
dstRow[col * 3 + 1] = srcUB[GCOMP];
dstRow[col * 3 + 2] = srcUB[RCOMP];
srcUB += 3;
}
}
#else
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + 0] = CHAN_TO_UBYTE(src[BCOMP]);
dstRow[col * 3 + 1] = CHAN_TO_UBYTE(src[GCOMP]);
dstRow[col * 3 + 2] = CHAN_TO_UBYTE(src[RCOMP]);
src += 3;
}
#endif
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_bgr888(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
ASSERT(dstFormat == &_mesa_texformat_bgr888);
ASSERT(dstFormat->TexelBytes == 3);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == GL_RGB &&
srcFormat == GL_RGB &&
srcType == GL_UNSIGNED_BYTE &&
littleEndian) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
srcFormat == GL_RGBA &&
srcType == GL_UNSIGNED_BYTE) {
/* extract BGR from RGBA */
int img, row, col;
for (img = 0; img < srcDepth; img++) {
const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
srcWidth, srcFormat, srcType);
GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0);
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + 0] = srcRow[col * 4 + RCOMP];
dstRow[col * 3 + 1] = srcRow[col * 4 + GCOMP];
dstRow[col * 3 + 2] = srcRow[col * 4 + BCOMP];
}
dstRow += dstRowStride;
srcRow += srcRowStride;
}
}
}
else if (!ctx->_ImageTransferState &&
srcType == GL_UNSIGNED_BYTE &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
GLubyte dstmap[4];
/* dstmap - how to swizzle from RGBA to dst format:
*/
dstmap[0] = 0;
dstmap[1] = 1;
dstmap[2] = 2;
dstmap[3] = ONE; /* ? */
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, 3,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = (const GLchan *) tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col * 3 + 0] = CHAN_TO_UBYTE(src[RCOMP]);
dstRow[col * 3 + 1] = CHAN_TO_UBYTE(src[GCOMP]);
dstRow[col * 3 + 2] = CHAN_TO_UBYTE(src[BCOMP]);
src += 3;
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_argb4444(TEXSTORE_PARAMS)
{
ASSERT(dstFormat == &_mesa_texformat_argb4444 ||
dstFormat == &_mesa_texformat_argb4444_rev);
ASSERT(dstFormat->TexelBytes == 2);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb4444 &&
baseInternalFormat == GL_RGBA &&
srcFormat == GL_BGRA &&
srcType == GL_UNSIGNED_SHORT_4_4_4_4_REV) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLushort *dstUS = (GLushort *) dstRow;
if (dstFormat == &_mesa_texformat_argb4444) {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_4444( CHAN_TO_UBYTE(src[ACOMP]),
CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 4;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_4444_REV( CHAN_TO_UBYTE(src[ACOMP]),
CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 4;
}
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_argb1555(TEXSTORE_PARAMS)
{
ASSERT(dstFormat == &_mesa_texformat_argb1555 ||
dstFormat == &_mesa_texformat_argb1555_rev);
ASSERT(dstFormat->TexelBytes == 2);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_argb1555 &&
baseInternalFormat == GL_RGBA &&
srcFormat == GL_BGRA &&
srcType == GL_UNSIGNED_SHORT_1_5_5_5_REV) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src =tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLushort *dstUS = (GLushort *) dstRow;
if (dstFormat == &_mesa_texformat_argb1555) {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_1555( CHAN_TO_UBYTE(src[ACOMP]),
CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 4;
}
}
else {
for (col = 0; col < srcWidth; col++) {
dstUS[col] = PACK_COLOR_1555_REV( CHAN_TO_UBYTE(src[ACOMP]),
CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 4;
}
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_al88(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
ASSERT(dstFormat == &_mesa_texformat_al88 ||
dstFormat == &_mesa_texformat_al88_rev);
ASSERT(dstFormat->TexelBytes == 2);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
dstFormat == &_mesa_texformat_al88 &&
baseInternalFormat == GL_LUMINANCE_ALPHA &&
srcFormat == GL_LUMINANCE_ALPHA &&
srcType == GL_UNSIGNED_BYTE &&
littleEndian) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
littleEndian &&
srcType == GL_UNSIGNED_BYTE &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
GLubyte dstmap[4];
/* dstmap - how to swizzle from RGBA to dst format:
*/
if ((littleEndian && dstFormat == &_mesa_texformat_al88) ||
(!littleEndian && dstFormat == &_mesa_texformat_al88_rev)) {
dstmap[0] = 0;
dstmap[1] = 3;
}
else {
dstmap[0] = 3;
dstmap[1] = 0;
}
dstmap[2] = ZERO; /* ? */
dstmap[3] = ONE; /* ? */
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, 2,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLushort *dstUS = (GLushort *) dstRow;
if (dstFormat == &_mesa_texformat_al88) {
for (col = 0; col < srcWidth; col++) {
/* src[0] is luminance, src[1] is alpha */
dstUS[col] = PACK_COLOR_88( CHAN_TO_UBYTE(src[1]),
CHAN_TO_UBYTE(src[0]) );
src += 2;
}
}
else {
for (col = 0; col < srcWidth; col++) {
/* src[0] is luminance, src[1] is alpha */
dstUS[col] = PACK_COLOR_88_REV( CHAN_TO_UBYTE(src[1]),
CHAN_TO_UBYTE(src[0]) );
src += 2;
}
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_rgb332(TEXSTORE_PARAMS)
{
ASSERT(dstFormat == &_mesa_texformat_rgb332);
ASSERT(dstFormat->TexelBytes == 1);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == GL_RGB &&
srcFormat == GL_RGB && srcType == GL_UNSIGNED_BYTE_3_3_2) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col] = PACK_COLOR_332( CHAN_TO_UBYTE(src[RCOMP]),
CHAN_TO_UBYTE(src[GCOMP]),
CHAN_TO_UBYTE(src[BCOMP]) );
src += 3;
}
dstRow += dstRowStride;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
/**
* Texstore for _mesa_texformat_a8, _mesa_texformat_l8, _mesa_texformat_i8.
*/
GLboolean
_mesa_texstore_a8(TEXSTORE_PARAMS)
{
ASSERT(dstFormat == &_mesa_texformat_a8 ||
dstFormat == &_mesa_texformat_l8 ||
dstFormat == &_mesa_texformat_i8);
ASSERT(dstFormat->TexelBytes == 1);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == srcFormat &&
srcType == GL_UNSIGNED_BYTE) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else if (!ctx->_ImageTransferState &&
srcType == GL_UNSIGNED_BYTE &&
can_swizzle(baseInternalFormat) &&
can_swizzle(srcFormat)) {
GLubyte dstmap[4];
/* dstmap - how to swizzle from RGBA to dst format:
*/
if (dstFormat == &_mesa_texformat_a8) {
dstmap[0] = 3;
}
else {
dstmap[0] = 0;
}
dstmap[1] = ZERO; /* ? */
dstmap[2] = ZERO; /* ? */
dstmap[3] = ONE; /* ? */
_mesa_swizzle_ubyte_image(ctx, dims,
srcFormat,
srcType,
baseInternalFormat,
dstmap, 1,
dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcAddr,
srcPacking);
}
else {
/* general path */
const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLchan *src = tempImage;
GLint img, row, col;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
for (col = 0; col < srcWidth; col++) {
dstRow[col] = CHAN_TO_UBYTE(src[col]);
}
dstRow += dstRowStride;
src += srcWidth;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
GLboolean
_mesa_texstore_ci8(TEXSTORE_PARAMS)
{
(void) dims; (void) baseInternalFormat;
ASSERT(dstFormat == &_mesa_texformat_ci8);
ASSERT(dstFormat->TexelBytes == 1);
ASSERT(baseInternalFormat == GL_COLOR_INDEX);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
srcFormat == GL_COLOR_INDEX &&
srcType == GL_UNSIGNED_BYTE) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
GLint img, row;
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
const GLvoid *src = _mesa_image_address(dims, srcPacking,
srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
_mesa_unpack_index_span(ctx, srcWidth, GL_UNSIGNED_BYTE, dstRow,
srcType, src, srcPacking,
ctx->_ImageTransferState);
dstRow += dstRowStride;
}
}
}
return GL_TRUE;
}
/**
* Texstore for _mesa_texformat_ycbcr or _mesa_texformat_ycbcr_rev.
*/
GLboolean
_mesa_texstore_ycbcr(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
(void) ctx; (void) dims; (void) baseInternalFormat;
ASSERT((dstFormat == &_mesa_texformat_ycbcr) ||
(dstFormat == &_mesa_texformat_ycbcr_rev));
ASSERT(dstFormat->TexelBytes == 2);
ASSERT(ctx->Extensions.MESA_ycbcr_texture);
ASSERT(srcFormat == GL_YCBCR_MESA);
ASSERT((srcType == GL_UNSIGNED_SHORT_8_8_MESA) ||
(srcType == GL_UNSIGNED_SHORT_8_8_REV_MESA));
ASSERT(baseInternalFormat == GL_YCBCR_MESA);
/* always just memcpy since no pixel transfer ops apply */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
/* Check if we need byte swapping */
/* XXX the logic here _might_ be wrong */
if (srcPacking->SwapBytes ^
(srcType == GL_UNSIGNED_SHORT_8_8_REV_MESA) ^
(dstFormat == &_mesa_texformat_ycbcr_rev) ^
!littleEndian) {
GLint img, row;
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
_mesa_swap2((GLushort *) dstRow, srcWidth);
dstRow += dstRowStride;
}
}
}
return GL_TRUE;
}
/**
* Store a combined depth/stencil texture image.
*/
GLboolean
_mesa_texstore_z24_s8(TEXSTORE_PARAMS)
{
const GLfloat depthScale = (GLfloat) 0xffffff;
ASSERT(dstFormat == &_mesa_texformat_z24_s8);
ASSERT(srcFormat == GL_DEPTH_STENCIL_EXT);
ASSERT(srcType == GL_UNSIGNED_INT_24_8_EXT);
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes) {
/* simple path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
const GLint srcRowStride
= _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType)
/ sizeof(GLuint);
GLint img, row;
for (img = 0; img < srcDepth; img++) {
GLuint *dstRow = (GLuint *) dstAddr
+ dstImageOffsets[dstZoffset + img]
+ dstYoffset * dstRowStride / sizeof(GLuint)
+ dstXoffset;
const GLuint *src
= (const GLuint *) _mesa_image_address(dims, srcPacking, srcAddr,
srcWidth, srcHeight,
srcFormat, srcType,
img, 0, 0);
for (row = 0; row < srcHeight; row++) {
GLubyte stencil[MAX_WIDTH];
GLint i;
/* the 24 depth bits will be in the high position: */
_mesa_unpack_depth_span(ctx, srcWidth,
GL_UNSIGNED_INT_24_8_EXT, /* dst type */
dstRow, /* dst addr */
depthScale,
srcType, src, srcPacking);
/* get the 8-bit stencil values */
_mesa_unpack_stencil_span(ctx, srcWidth,
GL_UNSIGNED_BYTE, /* dst type */
stencil, /* dst addr */
srcType, src, srcPacking,
ctx->_ImageTransferState);
/* merge stencil values into depth values */
for (i = 0; i < srcWidth; i++)
dstRow[i] |= stencil[i];
src += srcRowStride;
dstRow += dstRowStride / sizeof(GLuint);
}
}
}
return GL_TRUE;
}
/**
* Store a combined depth/stencil texture image.
*/
GLboolean
_mesa_texstore_s8_z24(TEXSTORE_PARAMS)
{
const GLuint depthScale = 0xffffff;
const GLint srcRowStride
= _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType)
/ sizeof(GLuint);
GLint img, row;
ASSERT(dstFormat == &_mesa_texformat_s8_z24);
ASSERT(srcFormat == GL_DEPTH_STENCIL_EXT || srcFormat == GL_DEPTH_COMPONENT);
ASSERT(srcFormat != GL_DEPTH_STENCIL_EXT || srcType == GL_UNSIGNED_INT_24_8_EXT);
/* Incase we only upload depth we need to preserve the stencil */
if (srcFormat == GL_DEPTH_COMPONENT) {
for (img = 0; img < srcDepth; img++) {
GLuint *dstRow = (GLuint *) dstAddr
+ dstImageOffsets[dstZoffset + img]
+ dstYoffset * dstRowStride / sizeof(GLuint)
+ dstXoffset;
const GLuint *src
= (const GLuint *) _mesa_image_address(dims, srcPacking, srcAddr,
srcWidth, srcHeight,
srcFormat, srcType,
img, 0, 0);
for (row = 0; row < srcHeight; row++) {
GLuint depth[MAX_WIDTH];
GLint i;
_mesa_unpack_depth_span(ctx, srcWidth,
GL_UNSIGNED_INT, /* dst type */
depth, /* dst addr */
depthScale,
srcType, src, srcPacking);
for (i = 0; i < srcWidth; i++)
dstRow[i] = depth[i] | (dstRow[i] & 0xFF000000);
src += srcRowStride;
dstRow += dstRowStride / sizeof(GLuint);
}
}
} else {
for (img = 0; img < srcDepth; img++) {
GLuint *dstRow = (GLuint *) dstAddr
+ dstImageOffsets[dstZoffset + img]
+ dstYoffset * dstRowStride / sizeof(GLuint)
+ dstXoffset;
const GLuint *src
= (const GLuint *) _mesa_image_address(dims, srcPacking, srcAddr,
srcWidth, srcHeight,
srcFormat, srcType,
img, 0, 0);
for (row = 0; row < srcHeight; row++) {
GLubyte stencil[MAX_WIDTH];
GLint i;
/* the 24 depth bits will be in the low position: */
_mesa_unpack_depth_span(ctx, srcWidth,
GL_UNSIGNED_INT, /* dst type */
dstRow, /* dst addr */
depthScale,
srcType, src, srcPacking);
/* get the 8-bit stencil values */
_mesa_unpack_stencil_span(ctx, srcWidth,
GL_UNSIGNED_BYTE, /* dst type */
stencil, /* dst addr */
srcType, src, srcPacking,
ctx->_ImageTransferState);
/* merge stencil values into depth values */
for (i = 0; i < srcWidth; i++)
dstRow[i] |= stencil[i] << 24;
src += srcRowStride;
dstRow += dstRowStride / sizeof(GLuint);
}
}
}
return GL_TRUE;
}
/**
* Store an image in any of the formats:
* _mesa_texformat_rgba_float32
* _mesa_texformat_rgb_float32
* _mesa_texformat_alpha_float32
* _mesa_texformat_luminance_float32
* _mesa_texformat_luminance_alpha_float32
* _mesa_texformat_intensity_float32
*/
GLboolean
_mesa_texstore_rgba_float32(TEXSTORE_PARAMS)
{
const GLint components = _mesa_components_in_format(dstFormat->BaseFormat);
ASSERT(dstFormat == &_mesa_texformat_rgba_float32 ||
dstFormat == &_mesa_texformat_rgb_float32 ||
dstFormat == &_mesa_texformat_alpha_float32 ||
dstFormat == &_mesa_texformat_luminance_float32 ||
dstFormat == &_mesa_texformat_luminance_alpha_float32 ||
dstFormat == &_mesa_texformat_intensity_float32);
ASSERT(baseInternalFormat == GL_RGBA ||
baseInternalFormat == GL_RGB ||
baseInternalFormat == GL_ALPHA ||
baseInternalFormat == GL_LUMINANCE ||
baseInternalFormat == GL_LUMINANCE_ALPHA ||
baseInternalFormat == GL_INTENSITY);
ASSERT(dstFormat->TexelBytes == components * sizeof(GLfloat));
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == srcFormat &&
srcType == GL_FLOAT) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
const GLfloat *tempImage = make_temp_float_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLfloat *srcRow = tempImage;
GLint bytesPerRow;
GLint img, row;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
bytesPerRow = srcWidth * components * sizeof(GLfloat);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
_mesa_memcpy(dstRow, srcRow, bytesPerRow);
dstRow += dstRowStride;
srcRow += srcWidth * components;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
/**
* As above, but store 16-bit floats.
*/
GLboolean
_mesa_texstore_rgba_float16(TEXSTORE_PARAMS)
{
const GLint components = _mesa_components_in_format(dstFormat->BaseFormat);
ASSERT(dstFormat == &_mesa_texformat_rgba_float16 ||
dstFormat == &_mesa_texformat_rgb_float16 ||
dstFormat == &_mesa_texformat_alpha_float16 ||
dstFormat == &_mesa_texformat_luminance_float16 ||
dstFormat == &_mesa_texformat_luminance_alpha_float16 ||
dstFormat == &_mesa_texformat_intensity_float16);
ASSERT(baseInternalFormat == GL_RGBA ||
baseInternalFormat == GL_RGB ||
baseInternalFormat == GL_ALPHA ||
baseInternalFormat == GL_LUMINANCE ||
baseInternalFormat == GL_LUMINANCE_ALPHA ||
baseInternalFormat == GL_INTENSITY);
ASSERT(dstFormat->TexelBytes == components * sizeof(GLhalfARB));
if (!ctx->_ImageTransferState &&
!srcPacking->SwapBytes &&
baseInternalFormat == srcFormat &&
srcType == GL_HALF_FLOAT_ARB) {
/* simple memcpy path */
memcpy_texture(ctx, dims,
dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset,
dstRowStride,
dstImageOffsets,
srcWidth, srcHeight, srcDepth, srcFormat, srcType,
srcAddr, srcPacking);
}
else {
/* general path */
const GLfloat *tempImage = make_temp_float_image(ctx, dims,
baseInternalFormat,
dstFormat->BaseFormat,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType, srcAddr,
srcPacking);
const GLfloat *src = tempImage;
GLint img, row;
if (!tempImage)
return GL_FALSE;
_mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight);
for (img = 0; img < srcDepth; img++) {
GLubyte *dstRow = (GLubyte *) dstAddr
+ dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes
+ dstYoffset * dstRowStride
+ dstXoffset * dstFormat->TexelBytes;
for (row = 0; row < srcHeight; row++) {
GLhalfARB *dstTexel = (GLhalfARB *) dstRow;
GLint i;
for (i = 0; i < srcWidth * components; i++) {
dstTexel[i] = _mesa_float_to_half(src[i]);
}
dstRow += dstRowStride;
src += srcWidth * components;
}
}
_mesa_free((void *) tempImage);
}
return GL_TRUE;
}
#if FEATURE_EXT_texture_sRGB
GLboolean
_mesa_texstore_srgb8(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
const struct gl_texture_format *newDstFormat;
StoreTexImageFunc store;
GLboolean k;
ASSERT(dstFormat == &_mesa_texformat_srgb8);
/* reuse normal rgb texstore code */
if (littleEndian) {
newDstFormat = &_mesa_texformat_bgr888;
store = _mesa_texstore_bgr888;
}
else {
newDstFormat = &_mesa_texformat_rgb888;
store = _mesa_texstore_rgb888;
}
k = store(ctx, dims, baseInternalFormat,
newDstFormat, dstAddr,
dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType,
srcAddr, srcPacking);
return k;
}
GLboolean
_mesa_texstore_srgba8(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
const struct gl_texture_format *newDstFormat;
GLboolean k;
ASSERT(dstFormat == &_mesa_texformat_srgba8);
/* reuse normal rgba texstore code */
if (littleEndian)
newDstFormat = &_mesa_texformat_rgba8888_rev;
else
newDstFormat = &_mesa_texformat_rgba8888;
k = _mesa_texstore_rgba8888(ctx, dims, baseInternalFormat,
newDstFormat, dstAddr,
dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType,
srcAddr, srcPacking);
return k;
}
GLboolean
_mesa_texstore_sl8(TEXSTORE_PARAMS)
{
const struct gl_texture_format *newDstFormat;
GLboolean k;
ASSERT(dstFormat == &_mesa_texformat_sl8);
newDstFormat = &_mesa_texformat_l8;
/* _mesa_textore_a8 handles luminance8 too */
k = _mesa_texstore_a8(ctx, dims, baseInternalFormat,
newDstFormat, dstAddr,
dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType,
srcAddr, srcPacking);
return k;
}
GLboolean
_mesa_texstore_sla8(TEXSTORE_PARAMS)
{
const GLboolean littleEndian = _mesa_little_endian();
const struct gl_texture_format *newDstFormat;
GLboolean k;
ASSERT(dstFormat == &_mesa_texformat_sla8);
/* reuse normal luminance/alpha texstore code */
if (littleEndian)
newDstFormat = &_mesa_texformat_al88;
else
newDstFormat = &_mesa_texformat_al88_rev;
k = _mesa_texstore_al88(ctx, dims, baseInternalFormat,
newDstFormat, dstAddr,
dstXoffset, dstYoffset, dstZoffset,
dstRowStride, dstImageOffsets,
srcWidth, srcHeight, srcDepth,
srcFormat, srcType,
srcAddr, srcPacking);
return k;
}
#endif /* FEATURE_EXT_texture_sRGB */
/**
* Check if an unpack PBO is active prior to fetching a texture image.
* If so, do bounds checking and map the buffer into main memory.
* Any errors detected will be recorded.
* The caller _must_ call _mesa_unmap_teximage_pbo() too!
*/
const GLvoid *
_mesa_validate_pbo_teximage(GLcontext *ctx, GLuint dimensions,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const GLvoid *pixels,
const struct gl_pixelstore_attrib *unpack,
const char *funcName)
{
GLubyte *buf;
if (unpack->BufferObj->Name == 0) {
/* no PBO */
return pixels;
}
if (!_mesa_validate_pbo_access(dimensions, unpack, width, height, depth,
format, type, pixels)) {
_mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(invalid PBO access");
return NULL;
}
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
GL_READ_ONLY_ARB, unpack->BufferObj);
if (!buf) {
_mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(PBO is mapped");
return NULL;
}
return ADD_POINTERS(buf, pixels);
}
/**
* Check if an unpack PBO is active prior to fetching a compressed texture
* image.
* If so, do bounds checking and map the buffer into main memory.
* Any errors detected will be recorded.
* The caller _must_ call _mesa_unmap_teximage_pbo() too!
*/
const GLvoid *
_mesa_validate_pbo_compressed_teximage(GLcontext *ctx,
GLsizei imageSize, const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
const char *funcName)
{
GLubyte *buf;
if (packing->BufferObj->Name == 0) {
/* not using a PBO - return pointer unchanged */
return pixels;
}
if ((const GLubyte *) pixels + imageSize >
((const GLubyte *) 0) + packing->BufferObj->Size) {
/* out of bounds read! */
_mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(invalid PBO access");
return NULL;
}
buf = (GLubyte*) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
GL_READ_ONLY_ARB, packing->BufferObj);
if (!buf) {
_mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(PBO is mapped");
return NULL;
}
return ADD_POINTERS(buf, pixels);
}
/**
* This function must be called after either of the validate_pbo_*_teximage()
* functions. It unmaps the PBO buffer if it was mapped earlier.
*/
void
_mesa_unmap_teximage_pbo(GLcontext *ctx,
const struct gl_pixelstore_attrib *unpack)
{
if (unpack->BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
unpack->BufferObj);
}
}
/**
* Adaptor for fetching a GLchan texel from a float-valued texture.
*/
static void
fetch_texel_float_to_chan(const struct gl_texture_image *texImage,
GLint i, GLint j, GLint k, GLchan *texelOut)
{
GLfloat temp[4];
ASSERT(texImage->FetchTexelf);
texImage->FetchTexelf(texImage, i, j, k, temp);
if (texImage->TexFormat->BaseFormat == GL_DEPTH_COMPONENT ||
texImage->TexFormat->BaseFormat == GL_DEPTH_STENCIL_EXT) {
/* just one channel */
UNCLAMPED_FLOAT_TO_CHAN(texelOut[0], temp[0]);
}
else {
/* four channels */
UNCLAMPED_FLOAT_TO_CHAN(texelOut[0], temp[0]);
UNCLAMPED_FLOAT_TO_CHAN(texelOut[1], temp[1]);
UNCLAMPED_FLOAT_TO_CHAN(texelOut[2], temp[2]);
UNCLAMPED_FLOAT_TO_CHAN(texelOut[3], temp[3]);
}
}
/**
* Adaptor for fetching a float texel from a GLchan-valued texture.
*/
static void
fetch_texel_chan_to_float(const struct gl_texture_image *texImage,
GLint i, GLint j, GLint k, GLfloat *texelOut)
{
GLchan temp[4];
ASSERT(texImage->FetchTexelc);
texImage->FetchTexelc(texImage, i, j, k, temp);
if (texImage->TexFormat->BaseFormat == GL_DEPTH_COMPONENT ||
texImage->TexFormat->BaseFormat == GL_DEPTH_STENCIL_EXT) {
/* just one channel */
texelOut[0] = CHAN_TO_FLOAT(temp[0]);
}
else {
/* four channels */
texelOut[0] = CHAN_TO_FLOAT(temp[0]);
texelOut[1] = CHAN_TO_FLOAT(temp[1]);
texelOut[2] = CHAN_TO_FLOAT(temp[2]);
texelOut[3] = CHAN_TO_FLOAT(temp[3]);
}
}
/**
* Initialize the texture image's FetchTexelc and FetchTexelf methods.
*/
void
_mesa_set_fetch_functions(struct gl_texture_image *texImage, GLuint dims)
{
ASSERT(dims == 1 || dims == 2 || dims == 3);
ASSERT(texImage->TexFormat);
switch (dims) {
case 1:
texImage->FetchTexelc = texImage->TexFormat->FetchTexel1D;
texImage->FetchTexelf = texImage->TexFormat->FetchTexel1Df;
break;
case 2:
texImage->FetchTexelc = texImage->TexFormat->FetchTexel2D;
texImage->FetchTexelf = texImage->TexFormat->FetchTexel2Df;
break;
case 3:
texImage->FetchTexelc = texImage->TexFormat->FetchTexel3D;
texImage->FetchTexelf = texImage->TexFormat->FetchTexel3Df;
break;
default:
;
}
/* now check if we need to use a float/chan adaptor */
if (!texImage->FetchTexelc) {
texImage->FetchTexelc = fetch_texel_float_to_chan;
}
else if (!texImage->FetchTexelf) {
texImage->FetchTexelf = fetch_texel_chan_to_float;
}
ASSERT(texImage->FetchTexelc);
ASSERT(texImage->FetchTexelf);
}
/**
* Choose the actual storage format for a new texture image.
* Mainly, this is a wrapper for the driver's ChooseTextureFormat() function.
* Also set some other texImage fields related to texture compression, etc.
* \param ctx rendering context
* \param texImage the gl_texture_image
* \param dims texture dimensions (1, 2 or 3)
* \param format the user-specified format parameter
* \param type the user-specified type parameter
* \param internalFormat the user-specified internal format hint
*/
static void
choose_texture_format(GLcontext *ctx, struct gl_texture_image *texImage,
GLuint dims,
GLenum format, GLenum type, GLint internalFormat)
{
ASSERT(dims == 1 || dims == 2 || dims == 3);
ASSERT(ctx->Driver.ChooseTextureFormat);
texImage->TexFormat
= ctx->Driver.ChooseTextureFormat(ctx, internalFormat, format, type);
ASSERT(texImage->TexFormat);
_mesa_set_fetch_functions(texImage, dims);
if (texImage->TexFormat->TexelBytes == 0) {
/* must be a compressed format */
texImage->IsCompressed = GL_TRUE;
texImage->CompressedSize =
ctx->Driver.CompressedTextureSize(ctx, texImage->Width,
texImage->Height, texImage->Depth,
texImage->TexFormat->MesaFormat);
}
else {
/* non-compressed format */
texImage->IsCompressed = GL_FALSE;
texImage->CompressedSize = 0;
}
}
/*
* This is the software fallback for Driver.TexImage1D()
* and Driver.CopyTexImage1D().
* \sa _mesa_store_teximage2d()
*/
void
_mesa_store_teximage1d(GLcontext *ctx, GLenum target, GLint level,
GLint internalFormat,
GLint width, GLint border,
GLenum format, GLenum type, const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
GLint postConvWidth = width;
GLint sizeInBytes;
(void) border;
if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
_mesa_adjust_image_for_convolution(ctx, 1, &postConvWidth, NULL);
}
choose_texture_format(ctx, texImage, 1, format, type, internalFormat);
/* allocate memory */
if (texImage->IsCompressed)
sizeInBytes = texImage->CompressedSize;
else
sizeInBytes = postConvWidth * texImage->TexFormat->TexelBytes;
texImage->Data = _mesa_alloc_texmemory(sizeInBytes);
if (!texImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D");
return;
}
pixels = _mesa_validate_pbo_teximage(ctx, 1, width, 1, 1, format, type,
pixels, packing, "glTexImage1D");
if (!pixels) {
/* Note: we check for a NULL image pointer here, _after_ we allocated
* memory for the texture. That's what the GL spec calls for.
*/
return;
}
else {
const GLint dstRowStride = 0;
GLboolean success;
ASSERT(texImage->TexFormat->StoreImage);
success = texImage->TexFormat->StoreImage(ctx, 1, texImage->_BaseFormat,
texImage->TexFormat,
texImage->Data,
0, 0, 0, /* dstX/Y/Zoffset */
dstRowStride,
texImage->ImageOffsets,
width, 1, 1,
format, type, pixels, packing);
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D");
}
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, packing);
}
/**
* This is the software fallback for Driver.TexImage2D()
* and Driver.CopyTexImage2D().
*
* This function is oriented toward storing images in main memory, rather
* than VRAM. Device driver's can easily plug in their own replacement.
*
* Note: width and height may be pre-convolved dimensions, but
* texImage->Width and texImage->Height will be post-convolved dimensions.
*/
void
_mesa_store_teximage2d(GLcontext *ctx, GLenum target, GLint level,
GLint internalFormat,
GLint width, GLint height, GLint border,
GLenum format, GLenum type, const void *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
GLint postConvWidth = width, postConvHeight = height;
GLint texelBytes, sizeInBytes;
(void) border;
if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
_mesa_adjust_image_for_convolution(ctx, 2, &postConvWidth,
&postConvHeight);
}
choose_texture_format(ctx, texImage, 2, format, type, internalFormat);
texelBytes = texImage->TexFormat->TexelBytes;
/* allocate memory */
if (texImage->IsCompressed)
sizeInBytes = texImage->CompressedSize;
else
sizeInBytes = postConvWidth * postConvHeight * texelBytes;
texImage->Data = _mesa_alloc_texmemory(sizeInBytes);
if (!texImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
return;
}
pixels = _mesa_validate_pbo_teximage(ctx, 2, width, height, 1, format, type,
pixels, packing, "glTexImage2D");
if (!pixels) {
/* Note: we check for a NULL image pointer here, _after_ we allocated
* memory for the texture. That's what the GL spec calls for.
*/
return;
}
else {
GLint dstRowStride;
GLboolean success;
if (texImage->IsCompressed) {
dstRowStride
= _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat, width);
}
else {
dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes;
}
ASSERT(texImage->TexFormat->StoreImage);
success = texImage->TexFormat->StoreImage(ctx, 2, texImage->_BaseFormat,
texImage->TexFormat,
texImage->Data,
0, 0, 0, /* dstX/Y/Zoffset */
dstRowStride,
texImage->ImageOffsets,
width, height, 1,
format, type, pixels, packing);
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
}
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, packing);
}
/**
* This is the software fallback for Driver.TexImage3D()
* and Driver.CopyTexImage3D().
* \sa _mesa_store_teximage2d()
*/
void
_mesa_store_teximage3d(GLcontext *ctx, GLenum target, GLint level,
GLint internalFormat,
GLint width, GLint height, GLint depth, GLint border,
GLenum format, GLenum type, const void *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
GLint texelBytes, sizeInBytes;
(void) border;
choose_texture_format(ctx, texImage, 3, format, type, internalFormat);
texelBytes = texImage->TexFormat->TexelBytes;
/* allocate memory */
if (texImage->IsCompressed)
sizeInBytes = texImage->CompressedSize;
else
sizeInBytes = width * height * depth * texelBytes;
texImage->Data = _mesa_alloc_texmemory(sizeInBytes);
if (!texImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D");
return;
}
pixels = _mesa_validate_pbo_teximage(ctx, 3, width, height, depth, format,
type, pixels, packing, "glTexImage3D");
if (!pixels) {
/* Note: we check for a NULL image pointer here, _after_ we allocated
* memory for the texture. That's what the GL spec calls for.
*/
return;
}
else {
GLint dstRowStride;
GLboolean success;
if (texImage->IsCompressed) {
dstRowStride
= _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat, width);
}
else {
dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes;
}
ASSERT(texImage->TexFormat->StoreImage);
success = texImage->TexFormat->StoreImage(ctx, 3, texImage->_BaseFormat,
texImage->TexFormat,
texImage->Data,
0, 0, 0, /* dstX/Y/Zoffset */
dstRowStride,
texImage->ImageOffsets,
width, height, depth,
format, type, pixels, packing);
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D");
}
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, packing);
}
/*
* This is the software fallback for Driver.TexSubImage1D()
* and Driver.CopyTexSubImage1D().
*/
void
_mesa_store_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint width,
GLenum format, GLenum type, const void *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* get pointer to src pixels (may be in a pbo which we'll map here) */
pixels = _mesa_validate_pbo_teximage(ctx, 1, width, 1, 1, format, type,
pixels, packing, "glTexSubImage1D");
if (!pixels)
return;
{
const GLint dstRowStride = 0;
GLboolean success;
ASSERT(texImage->TexFormat->StoreImage);
success = texImage->TexFormat->StoreImage(ctx, 1, texImage->_BaseFormat,
texImage->TexFormat,
texImage->Data,
xoffset, 0, 0, /* offsets */
dstRowStride,
texImage->ImageOffsets,
width, 1, 1,
format, type, pixels, packing);
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage1D");
}
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, packing);
}
/**
* This is the software fallback for Driver.TexSubImage2D()
* and Driver.CopyTexSubImage2D().
*/
void
_mesa_store_texsubimage2d(GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint width, GLint height,
GLenum format, GLenum type, const void *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* get pointer to src pixels (may be in a pbo which we'll map here) */
pixels = _mesa_validate_pbo_teximage(ctx, 2, width, height, 1, format, type,
pixels, packing, "glTexSubImage2D");
if (!pixels)
return;
{
GLint dstRowStride = 0;
GLboolean success;
if (texImage->IsCompressed) {
dstRowStride = _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat,
texImage->Width);
}
else {
dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes;
}
ASSERT(texImage->TexFormat->StoreImage);
success = texImage->TexFormat->StoreImage(ctx, 2, texImage->_BaseFormat,
texImage->TexFormat,
texImage->Data,
xoffset, yoffset, 0,
dstRowStride,
texImage->ImageOffsets,
width, height, 1,
format, type, pixels, packing);
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage2D");
}
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, packing);
}
/*
* This is the software fallback for Driver.TexSubImage3D().
* and Driver.CopyTexSubImage3D().
*/
void
_mesa_store_texsubimage3d(GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLint width, GLint height, GLint depth,
GLenum format, GLenum type, const void *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* get pointer to src pixels (may be in a pbo which we'll map here) */
pixels = _mesa_validate_pbo_teximage(ctx, 3, width, height, depth, format,
type, pixels, packing,
"glTexSubImage3D");
if (!pixels)
return;
{
GLint dstRowStride;
GLboolean success;
if (texImage->IsCompressed) {
dstRowStride = _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat,
texImage->Width);
}
else {
dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes;
}
ASSERT(texImage->TexFormat->StoreImage);
success = texImage->TexFormat->StoreImage(ctx, 3, texImage->_BaseFormat,
texImage->TexFormat,
texImage->Data,
xoffset, yoffset, zoffset,
dstRowStride,
texImage->ImageOffsets,
width, height, depth,
format, type, pixels, packing);
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage3D");
}
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, packing);
}
/*
* Fallback for Driver.CompressedTexImage1D()
*/
void
_mesa_store_compressed_teximage1d(GLcontext *ctx, GLenum target, GLint level,
GLint internalFormat,
GLint width, GLint border,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* this space intentionally left blank */
(void) ctx;
(void) target; (void) level;
(void) internalFormat;
(void) width; (void) border;
(void) imageSize; (void) data;
(void) texObj;
(void) texImage;
}
/**
* Fallback for Driver.CompressedTexImage2D()
*/
void
_mesa_store_compressed_teximage2d(GLcontext *ctx, GLenum target, GLint level,
GLint internalFormat,
GLint width, GLint height, GLint border,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
(void) width; (void) height; (void) border;
/* This is pretty simple, basically just do a memcpy without worrying
* about the usual image unpacking or image transfer operations.
*/
ASSERT(texObj);
ASSERT(texImage);
ASSERT(texImage->Width > 0);
ASSERT(texImage->Height > 0);
ASSERT(texImage->Depth == 1);
ASSERT(texImage->Data == NULL); /* was freed in glCompressedTexImage2DARB */
choose_texture_format(ctx, texImage, 2, 0, 0, internalFormat);
/* allocate storage */
texImage->Data = _mesa_alloc_texmemory(imageSize);
if (!texImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage2DARB");
return;
}
data = _mesa_validate_pbo_compressed_teximage(ctx, imageSize, data,
&ctx->Unpack,
"glCompressedTexImage2D");
if (!data)
return;
/* copy the data */
ASSERT(texImage->CompressedSize == (GLuint) imageSize);
MEMCPY(texImage->Data, data, imageSize);
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, &ctx->Unpack);
}
/*
* Fallback for Driver.CompressedTexImage3D()
*/
void
_mesa_store_compressed_teximage3d(GLcontext *ctx, GLenum target, GLint level,
GLint internalFormat,
GLint width, GLint height, GLint depth,
GLint border,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* this space intentionally left blank */
(void) ctx;
(void) target; (void) level;
(void) internalFormat;
(void) width; (void) height; (void) depth;
(void) border;
(void) imageSize; (void) data;
(void) texObj;
(void) texImage;
}
/**
* Fallback for Driver.CompressedTexSubImage1D()
*/
void
_mesa_store_compressed_texsubimage1d(GLcontext *ctx, GLenum target,
GLint level,
GLint xoffset, GLsizei width,
GLenum format,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* there are no compressed 1D texture formats yet */
(void) ctx;
(void) target; (void) level;
(void) xoffset; (void) width;
(void) format;
(void) imageSize; (void) data;
(void) texObj;
(void) texImage;
}
/**
* Fallback for Driver.CompressedTexSubImage2D()
*/
void
_mesa_store_compressed_texsubimage2d(GLcontext *ctx, GLenum target,
GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
GLint bytesPerRow, destRowStride, srcRowStride;
GLint i, rows;
GLubyte *dest;
const GLubyte *src;
const GLuint mesaFormat = texImage->TexFormat->MesaFormat;
(void) format;
/* these should have been caught sooner */
ASSERT((width & 3) == 0 || width == 2 || width == 1);
ASSERT((height & 3) == 0 || height == 2 || height == 1);
ASSERT((xoffset & 3) == 0);
ASSERT((yoffset & 3) == 0);
/* get pointer to src pixels (may be in a pbo which we'll map here) */
data = _mesa_validate_pbo_compressed_teximage(ctx, imageSize, data,
&ctx->Unpack,
"glCompressedTexSubImage2D");
if (!data)
return;
srcRowStride = _mesa_compressed_row_stride(mesaFormat, width);
src = (const GLubyte *) data;
destRowStride = _mesa_compressed_row_stride(mesaFormat, texImage->Width);
dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
texImage->TexFormat->MesaFormat,
texImage->Width,
(GLubyte *) texImage->Data);
bytesPerRow = srcRowStride;
rows = height / 4;
for (i = 0; i < rows; i++) {
MEMCPY(dest, src, bytesPerRow);
dest += destRowStride;
src += srcRowStride;
}
/* GL_SGIS_generate_mipmap */
if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
ctx->Driver.GenerateMipmap(ctx, target, texObj);
}
_mesa_unmap_teximage_pbo(ctx, &ctx->Unpack);
}
/**
* Fallback for Driver.CompressedTexSubImage3D()
*/
void
_mesa_store_compressed_texsubimage3d(GLcontext *ctx, GLenum target,
GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
/* there are no compressed 3D texture formats yet */
(void) ctx;
(void) target; (void) level;
(void) xoffset; (void) yoffset; (void) zoffset;
(void) width; (void) height; (void) depth;
(void) format;
(void) imageSize; (void) data;
(void) texObj;
(void) texImage;
}
#if FEATURE_EXT_texture_sRGB
/**
* Test if given texture image is an sRGB format.
*/
static GLboolean
is_srgb_teximage(const struct gl_texture_image *texImage)
{
switch (texImage->TexFormat->MesaFormat) {
case MESA_FORMAT_SRGB8:
case MESA_FORMAT_SRGBA8:
case MESA_FORMAT_SL8:
case MESA_FORMAT_SLA8:
return GL_TRUE;
default:
return GL_FALSE;
}
}
#endif /* FEATURE_EXT_texture_sRGB */
/**
* This is the software fallback for Driver.GetTexImage().
* All error checking will have been done before this routine is called.
*/
void
_mesa_get_teximage(GLcontext *ctx, GLenum target, GLint level,
GLenum format, GLenum type, GLvoid *pixels,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
const GLuint dimensions = (target == GL_TEXTURE_3D) ? 3 : 2;
if (ctx->Pack.BufferObj->Name) {
/* Packing texture image into a PBO.
* Map the (potentially) VRAM-based buffer into our process space so
* we can write into it with the code below.
* A hardware driver might use a sophisticated blit to move the
* texture data to the PBO if the PBO is in VRAM along with the texture.
*/
GLubyte *buf = (GLubyte *)
ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
GL_WRITE_ONLY_ARB, ctx->Pack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,"glGetTexImage(PBO is mapped)");
return;
}
/* <pixels> was an offset into the PBO.
* Now make it a real, client-side pointer inside the mapped region.
*/
pixels = ADD_POINTERS(buf, pixels);
}
else if (!pixels) {
/* not an error */
return;
}
{
const GLint width = texImage->Width;
const GLint height = texImage->Height;
const GLint depth = texImage->Depth;
GLint img, row;
for (img = 0; img < depth; img++) {
for (row = 0; row < height; row++) {
/* compute destination address in client memory */
GLvoid *dest = _mesa_image_address( dimensions, &ctx->Pack, pixels,
width, height, format, type,
img, row, 0);
assert(dest);
if (format == GL_COLOR_INDEX) {
GLuint indexRow[MAX_WIDTH];
GLint col;
/* Can't use FetchTexel here because that returns RGBA */
if (texImage->TexFormat->IndexBits == 8) {
const GLubyte *src = (const GLubyte *) texImage->Data;
src += width * (img * texImage->Height + row);
for (col = 0; col < width; col++) {
indexRow[col] = src[col];
}
}
else if (texImage->TexFormat->IndexBits == 16) {
const GLushort *src = (const GLushort *) texImage->Data;
src += width * (img * texImage->Height + row);
for (col = 0; col < width; col++) {
indexRow[col] = src[col];
}
}
else {
_mesa_problem(ctx,
"Color index problem in _mesa_GetTexImage");
}
_mesa_pack_index_span(ctx, width, type, dest,
indexRow, &ctx->Pack,
0 /* no image transfer */);
}
else if (format == GL_DEPTH_COMPONENT) {
GLfloat depthRow[MAX_WIDTH];
GLint col;
for (col = 0; col < width; col++) {
(*texImage->FetchTexelf)(texImage, col, row, img,
depthRow + col);
}
_mesa_pack_depth_span(ctx, width, dest, type,
depthRow, &ctx->Pack);
}
else if (format == GL_DEPTH_STENCIL_EXT) {
/* XXX Note: we're bypassing texImage->FetchTexel()! */
const GLuint *src = (const GLuint *) texImage->Data;
src += width * row + width * height * img;
_mesa_memcpy(dest, src, width * sizeof(GLuint));
if (ctx->Pack.SwapBytes) {
_mesa_swap4((GLuint *) dest, width);
}
}
else if (format == GL_YCBCR_MESA) {
/* No pixel transfer */
const GLint rowstride = texImage->RowStride;
MEMCPY(dest,
(const GLushort *) texImage->Data + row * rowstride,
width * sizeof(GLushort));
/* check for byte swapping */
if ((texImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR
&& type == GL_UNSIGNED_SHORT_8_8_REV_MESA) ||
(texImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV
&& type == GL_UNSIGNED_SHORT_8_8_MESA)) {
if (!ctx->Pack.SwapBytes)
_mesa_swap2((GLushort *) dest, width);
}
else if (ctx->Pack.SwapBytes) {
_mesa_swap2((GLushort *) dest, width);
}
}
#if FEATURE_EXT_texture_sRGB
else if (is_srgb_teximage(texImage)) {
/* no pixel transfer and no non-linear to linear conversion */
const GLint comps = texImage->TexFormat->TexelBytes;
const GLint rowstride = comps * texImage->RowStride;
MEMCPY(dest,
(const GLubyte *) texImage->Data + row * rowstride,
comps * width * sizeof(GLubyte));
}
#endif /* FEATURE_EXT_texture_sRGB */
else {
/* general case: convert row to RGBA format */
GLfloat rgba[MAX_WIDTH][4];
GLint col;
for (col = 0; col < width; col++) {
(*texImage->FetchTexelf)(texImage, col, row, img, rgba[col]);
if (texImage->TexFormat->BaseFormat == GL_ALPHA) {
rgba[col][RCOMP] = 0.0;
rgba[col][GCOMP] = 0.0;
rgba[col][BCOMP] = 0.0;
}
else if (texImage->TexFormat->BaseFormat == GL_LUMINANCE) {
rgba[col][GCOMP] = 0.0;
rgba[col][BCOMP] = 0.0;
rgba[col][ACOMP] = 1.0;
}
else if (texImage->TexFormat->BaseFormat == GL_LUMINANCE_ALPHA) {
rgba[col][GCOMP] = 0.0;
rgba[col][BCOMP] = 0.0;
}
else if (texImage->TexFormat->BaseFormat == GL_INTENSITY) {
rgba[col][GCOMP] = 0.0;
rgba[col][BCOMP] = 0.0;
rgba[col][ACOMP] = 1.0;
}
}
_mesa_pack_rgba_span_float(ctx, width, (GLfloat (*)[4]) rgba,
format, type, dest,
&ctx->Pack, 0x0 /*image xfer ops*/);
} /* format */
} /* row */
} /* img */
}
if (ctx->Pack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
ctx->Pack.BufferObj);
}
}
/**
* This is the software fallback for Driver.GetCompressedTexImage().
* All error checking will have been done before this routine is called.
*/
void
_mesa_get_compressed_teximage(GLcontext *ctx, GLenum target, GLint level,
GLvoid *img,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage)
{
GLuint size;
if (ctx->Pack.BufferObj->Name) {
/* pack texture image into a PBO */
GLubyte *buf;
if ((const GLubyte *) img + texImage->CompressedSize >
(const GLubyte *) ctx->Pack.BufferObj->Size) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetCompressedTexImage(invalid PBO access)");
return;
}
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
GL_WRITE_ONLY_ARB,
ctx->Pack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetCompressedTexImage(PBO is mapped)");
return;
}
img = ADD_POINTERS(buf, img);
}
else if (!img) {
/* not an error */
return;
}
/* don't use texImage->CompressedSize since that may be padded out */
size = _mesa_compressed_texture_size(ctx, texImage->Width, texImage->Height,
texImage->Depth,
texImage->TexFormat->MesaFormat);
/* just memcpy, no pixelstore or pixel transfer */
_mesa_memcpy(img, texImage->Data, size);
if (ctx->Pack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
ctx->Pack.BufferObj);
}
}