blob: b9b7712f3f7683c6958c6445f3708e7338f3cc6f [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 7.0.3
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file prog_execute.c
* Software interpreter for vertex/fragment programs.
* \author Brian Paul
*/
/*
* NOTE: we do everything in single-precision floating point; we don't
* currently observe the single/half/fixed-precision qualifiers.
*
*/
#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "program.h"
#include "prog_execute.h"
#include "prog_instruction.h"
#include "prog_parameter.h"
#include "prog_print.h"
#include "shader/slang/slang_library_noise.h"
/* debug predicate */
#define DEBUG_PROG 0
/**
* Set x to positive or negative infinity.
*/
#if defined(USE_IEEE) || defined(_WIN32)
#define SET_POS_INFINITY(x) ( *((GLuint *) (void *)&x) = 0x7F800000 )
#define SET_NEG_INFINITY(x) ( *((GLuint *) (void *)&x) = 0xFF800000 )
#elif defined(VMS)
#define SET_POS_INFINITY(x) x = __MAXFLOAT
#define SET_NEG_INFINITY(x) x = -__MAXFLOAT
#else
#define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
#define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
#endif
#define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
/**
* Return a pointer to the 4-element float vector specified by the given
* source register.
*/
static INLINE const GLfloat *
get_register_pointer(const struct prog_src_register *source,
const struct gl_program_machine *machine)
{
if (source->RelAddr) {
const GLint reg = source->Index + machine->AddressReg[0][0];
if (source->File == PROGRAM_ENV_PARAM)
if (reg < 0 || reg >= MAX_PROGRAM_ENV_PARAMS)
return ZeroVec;
else
return machine->EnvParams[reg];
else {
const struct gl_program_parameter_list *params;
ASSERT(source->File == PROGRAM_LOCAL_PARAM ||
source->File == PROGRAM_CONSTANT ||
source->File == PROGRAM_STATE_VAR ||
source->File == PROGRAM_UNIFORM);
params = machine->CurProgram->Parameters;
if (reg < 0 || reg >= params->NumParameters)
return ZeroVec;
else
return params->ParameterValues[reg];
}
}
switch (source->File) {
case PROGRAM_TEMPORARY:
ASSERT(source->Index < MAX_PROGRAM_TEMPS);
return machine->Temporaries[source->Index];
case PROGRAM_INPUT:
if (machine->CurProgram->Target == GL_VERTEX_PROGRAM_ARB) {
ASSERT(source->Index < VERT_ATTRIB_MAX);
return machine->VertAttribs[source->Index];
}
else {
ASSERT(source->Index < FRAG_ATTRIB_MAX);
return machine->Attribs[source->Index][machine->CurElement];
}
case PROGRAM_OUTPUT:
ASSERT(source->Index < MAX_PROGRAM_OUTPUTS);
return machine->Outputs[source->Index];
case PROGRAM_LOCAL_PARAM:
ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
return machine->CurProgram->LocalParams[source->Index];
case PROGRAM_ENV_PARAM:
ASSERT(source->Index < MAX_PROGRAM_ENV_PARAMS);
return machine->EnvParams[source->Index];
case PROGRAM_STATE_VAR:
/* Fallthrough */
case PROGRAM_CONSTANT:
/* Fallthrough */
case PROGRAM_UNIFORM:
/* Fallthrough */
case PROGRAM_NAMED_PARAM:
ASSERT(source->Index <
(GLint) machine->CurProgram->Parameters->NumParameters);
return machine->CurProgram->Parameters->ParameterValues[source->Index];
default:
_mesa_problem(NULL,
"Invalid input register file %d in get_register_pointer()",
source->File);
return NULL;
}
}
#if FEATURE_MESA_program_debug
static struct gl_program_machine *CurrentMachine = NULL;
/**
* For GL_MESA_program_debug.
* Return current value (4*GLfloat) of a program register.
* Called via ctx->Driver.GetProgramRegister().
*/
void
_mesa_get_program_register(GLcontext *ctx, enum register_file file,
GLuint index, GLfloat val[4])
{
if (CurrentMachine) {
struct prog_src_register src;
const GLfloat *reg;
src.File = file;
src.Index = index;
reg = get_register_pointer(&src, CurrentMachine);
COPY_4V(val, reg);
}
}
#endif /* FEATURE_MESA_program_debug */
/**
* Fetch a 4-element float vector from the given source register.
* Apply swizzling and negating as needed.
*/
static void
fetch_vector4(const struct prog_src_register *source,
const struct gl_program_machine *machine, GLfloat result[4])
{
const GLfloat *src = get_register_pointer(source, machine);
ASSERT(src);
if (source->Swizzle == SWIZZLE_NOOP) {
/* no swizzling */
COPY_4V(result, src);
}
else {
ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
result[1] = src[GET_SWZ(source->Swizzle, 1)];
result[2] = src[GET_SWZ(source->Swizzle, 2)];
result[3] = src[GET_SWZ(source->Swizzle, 3)];
}
if (source->NegateBase) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->NegateAbs) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
}
/**
* Fetch the derivative with respect to X or Y for the given register.
* XXX this currently only works for fragment program input attribs.
*/
static void
fetch_vector4_deriv(GLcontext * ctx,
const struct prog_src_register *source,
const struct gl_program_machine *machine,
char xOrY, GLfloat result[4])
{
if (source->File == PROGRAM_INPUT && source->Index < machine->NumDeriv) {
const GLint col = machine->CurElement;
const GLfloat w = machine->Attribs[FRAG_ATTRIB_WPOS][col][3];
const GLfloat invQ = 1.0f / w;
GLfloat deriv[4];
if (xOrY == 'X') {
deriv[0] = machine->DerivX[source->Index][0] * invQ;
deriv[1] = machine->DerivX[source->Index][1] * invQ;
deriv[2] = machine->DerivX[source->Index][2] * invQ;
deriv[3] = machine->DerivX[source->Index][3] * invQ;
}
else {
deriv[0] = machine->DerivY[source->Index][0] * invQ;
deriv[1] = machine->DerivY[source->Index][1] * invQ;
deriv[2] = machine->DerivY[source->Index][2] * invQ;
deriv[3] = machine->DerivY[source->Index][3] * invQ;
}
result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
if (source->NegateBase) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->NegateAbs) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
}
else {
ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
}
}
/**
* As above, but only return result[0] element.
*/
static void
fetch_vector1(const struct prog_src_register *source,
const struct gl_program_machine *machine, GLfloat result[4])
{
const GLfloat *src = get_register_pointer(source, machine);
ASSERT(src);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
if (source->NegateBase) {
result[0] = -result[0];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
}
if (source->NegateAbs) {
result[0] = -result[0];
}
}
/**
* Fetch texel from texture. Use partial derivatives when possible.
*/
static INLINE void
fetch_texel(GLcontext *ctx,
const struct gl_program_machine *machine,
const struct prog_instruction *inst,
const GLfloat texcoord[4], GLfloat lodBias,
GLfloat color[4])
{
const GLuint unit = machine->Samplers[inst->TexSrcUnit];
/* Note: we only have the right derivatives for fragment input attribs.
*/
if (machine->NumDeriv > 0 &&
inst->SrcReg[0].File == PROGRAM_INPUT &&
inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit) {
/* simple texture fetch for which we should have derivatives */
GLuint attr = inst->SrcReg[0].Index;
machine->FetchTexelDeriv(ctx, texcoord,
machine->DerivX[attr],
machine->DerivY[attr],
lodBias, unit, color);
}
else {
machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
}
}
/**
* Test value against zero and return GT, LT, EQ or UN if NaN.
*/
static INLINE GLuint
generate_cc(float value)
{
if (value != value)
return COND_UN; /* NaN */
if (value > 0.0F)
return COND_GT;
if (value < 0.0F)
return COND_LT;
return COND_EQ;
}
/**
* Test if the ccMaskRule is satisfied by the given condition code.
* Used to mask destination writes according to the current condition code.
*/
static INLINE GLboolean
test_cc(GLuint condCode, GLuint ccMaskRule)
{
switch (ccMaskRule) {
case COND_EQ: return (condCode == COND_EQ);
case COND_NE: return (condCode != COND_EQ);
case COND_LT: return (condCode == COND_LT);
case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
case COND_GT: return (condCode == COND_GT);
case COND_TR: return GL_TRUE;
case COND_FL: return GL_FALSE;
default: return GL_TRUE;
}
}
/**
* Evaluate the 4 condition codes against a predicate and return GL_TRUE
* or GL_FALSE to indicate result.
*/
static INLINE GLboolean
eval_condition(const struct gl_program_machine *machine,
const struct prog_instruction *inst)
{
const GLuint swizzle = inst->DstReg.CondSwizzle;
const GLuint condMask = inst->DstReg.CondMask;
if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/**
* Store 4 floats into a register. Observe the instructions saturate and
* set-condition-code flags.
*/
static void
store_vector4(const struct prog_instruction *inst,
struct gl_program_machine *machine, const GLfloat value[4])
{
const struct prog_dst_register *dest = &(inst->DstReg);
const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
GLfloat *dstReg;
GLfloat dummyReg[4];
GLfloat clampedValue[4];
GLuint writeMask = dest->WriteMask;
switch (dest->File) {
case PROGRAM_OUTPUT:
ASSERT(dest->Index < MAX_PROGRAM_OUTPUTS);
dstReg = machine->Outputs[dest->Index];
break;
case PROGRAM_TEMPORARY:
ASSERT(dest->Index < MAX_PROGRAM_TEMPS);
dstReg = machine->Temporaries[dest->Index];
break;
case PROGRAM_WRITE_ONLY:
dstReg = dummyReg;
return;
default:
_mesa_problem(NULL, "bad register file in store_vector4(fp)");
return;
}
#if 0
if (value[0] > 1.0e10 ||
IS_INF_OR_NAN(value[0]) ||
IS_INF_OR_NAN(value[1]) ||
IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
#endif
if (clamp) {
clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
value = clampedValue;
}
if (dest->CondMask != COND_TR) {
/* condition codes may turn off some writes */
if (writeMask & WRITEMASK_X) {
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)],
dest->CondMask))
writeMask &= ~WRITEMASK_X;
}
if (writeMask & WRITEMASK_Y) {
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)],
dest->CondMask))
writeMask &= ~WRITEMASK_Y;
}
if (writeMask & WRITEMASK_Z) {
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)],
dest->CondMask))
writeMask &= ~WRITEMASK_Z;
}
if (writeMask & WRITEMASK_W) {
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)],
dest->CondMask))
writeMask &= ~WRITEMASK_W;
}
}
if (writeMask & WRITEMASK_X)
dstReg[0] = value[0];
if (writeMask & WRITEMASK_Y)
dstReg[1] = value[1];
if (writeMask & WRITEMASK_Z)
dstReg[2] = value[2];
if (writeMask & WRITEMASK_W)
dstReg[3] = value[3];
if (inst->CondUpdate) {
if (writeMask & WRITEMASK_X)
machine->CondCodes[0] = generate_cc(value[0]);
if (writeMask & WRITEMASK_Y)
machine->CondCodes[1] = generate_cc(value[1]);
if (writeMask & WRITEMASK_Z)
machine->CondCodes[2] = generate_cc(value[2]);
if (writeMask & WRITEMASK_W)
machine->CondCodes[3] = generate_cc(value[3]);
#if DEBUG_PROG
printf("CondCodes=(%s,%s,%s,%s) for:\n",
_mesa_condcode_string(machine->CondCodes[0]),
_mesa_condcode_string(machine->CondCodes[1]),
_mesa_condcode_string(machine->CondCodes[2]),
_mesa_condcode_string(machine->CondCodes[3]));
#endif
}
}
/**
* Execute the given vertex/fragment program.
*
* \param ctx rendering context
* \param program the program to execute
* \param machine machine state (must be initialized)
* \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
*/
GLboolean
_mesa_execute_program(GLcontext * ctx,
const struct gl_program *program,
struct gl_program_machine *machine)
{
const GLuint numInst = program->NumInstructions;
const GLuint maxExec = 10000;
GLint pc, numExec = 0;
machine->CurProgram = program;
if (DEBUG_PROG) {
printf("execute program %u --------------------\n", program->Id);
}
#if FEATURE_MESA_program_debug
CurrentMachine = machine;
#endif
if (program->Target == GL_VERTEX_PROGRAM_ARB) {
machine->EnvParams = ctx->VertexProgram.Parameters;
}
else {
machine->EnvParams = ctx->FragmentProgram.Parameters;
}
for (pc = 0; pc < numInst; pc++) {
const struct prog_instruction *inst = program->Instructions + pc;
#if FEATURE_MESA_program_debug
if (ctx->FragmentProgram.CallbackEnabled &&
ctx->FragmentProgram.Callback) {
ctx->FragmentProgram.CurrentPosition = inst->StringPos;
ctx->FragmentProgram.Callback(program->Target,
ctx->FragmentProgram.CallbackData);
}
#endif
if (DEBUG_PROG) {
_mesa_print_instruction(inst);
}
switch (inst->Opcode) {
case OPCODE_ABS:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = FABSF(a[0]);
result[1] = FABSF(a[1]);
result[2] = FABSF(a[2]);
result[3] = FABSF(a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_ADD:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[0] + b[0];
result[1] = a[1] + b[1];
result[2] = a[2] + b[2];
result[3] = a[3] + b[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_ARL:
{
GLfloat t[4];
fetch_vector4(&inst->SrcReg[0], machine, t);
machine->AddressReg[0][0] = (GLint) FLOORF(t[0]);
}
break;
case OPCODE_BGNLOOP:
/* no-op */
break;
case OPCODE_ENDLOOP:
/* subtract 1 here since pc is incremented by for(pc) loop */
pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
break;
case OPCODE_BGNSUB: /* begin subroutine */
break;
case OPCODE_ENDSUB: /* end subroutine */
break;
case OPCODE_BRA: /* branch (conditional) */
/* fall-through */
case OPCODE_BRK: /* break out of loop (conditional) */
/* fall-through */
case OPCODE_CONT: /* continue loop (conditional) */
if (eval_condition(machine, inst)) {
/* take branch */
/* Subtract 1 here since we'll do pc++ at end of for-loop */
pc = inst->BranchTarget - 1;
}
break;
case OPCODE_CAL: /* Call subroutine (conditional) */
if (eval_condition(machine, inst)) {
/* call the subroutine */
if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
}
machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
/* Subtract 1 here since we'll do pc++ at end of for-loop */
pc = inst->BranchTarget - 1;
}
break;
case OPCODE_CMP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] < 0.0F ? b[0] : c[0];
result[1] = a[1] < 0.0F ? b[1] : c[1];
result[2] = a[2] < 0.0F ? b[2] : c[2];
result[3] = a[3] < 0.0F ? b[3] : c[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_COS:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = result[1] = result[2] = result[3]
= (GLfloat) _mesa_cos(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_DDX: /* Partial derivative with respect to X */
{
GLfloat result[4];
fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
'X', result);
store_vector4(inst, machine, result);
}
break;
case OPCODE_DDY: /* Partial derivative with respect to Y */
{
GLfloat result[4];
fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
'Y', result);
store_vector4(inst, machine, result);
}
break;
case OPCODE_DP3:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
}
}
break;
case OPCODE_DP4:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
result[0], a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_DPH:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_DST: /* Distance vector */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = 1.0F;
result[1] = a[1] * b[1];
result[2] = a[2];
result[3] = b[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_EXP:
{
GLfloat t[4], q[4], floor_t0;
fetch_vector1(&inst->SrcReg[0], machine, t);
floor_t0 = FLOORF(t[0]);
if (floor_t0 > FLT_MAX_EXP) {
SET_POS_INFINITY(q[0]);
SET_POS_INFINITY(q[2]);
}
else if (floor_t0 < FLT_MIN_EXP) {
q[0] = 0.0F;
q[2] = 0.0F;
}
else {
q[0] = LDEXPF(1.0, (int) floor_t0);
/* Note: GL_NV_vertex_program expects
* result.z = result.x * APPX(result.y)
* We do what the ARB extension says.
*/
q[2] = (GLfloat) pow(2.0, t[0]);
}
q[1] = t[0] - floor_t0;
q[3] = 1.0F;
store_vector4( inst, machine, q );
}
break;
case OPCODE_EX2: /* Exponential base 2 */
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = result[1] = result[2] = result[3] =
(GLfloat) _mesa_pow(2.0, a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_FLR:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = FLOORF(a[0]);
result[1] = FLOORF(a[1]);
result[2] = FLOORF(a[2]);
result[3] = FLOORF(a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_FRC:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = a[0] - FLOORF(a[0]);
result[1] = a[1] - FLOORF(a[1]);
result[2] = a[2] - FLOORF(a[2]);
result[3] = a[3] - FLOORF(a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_IF:
{
GLboolean cond;
/* eval condition */
if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
GLfloat a[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
cond = (a[0] != 0.0);
}
else {
cond = eval_condition(machine, inst);
}
if (DEBUG_PROG) {
printf("IF: %d\n", cond);
}
/* do if/else */
if (cond) {
/* do if-clause (just continue execution) */
}
else {
/* go to the instruction after ELSE or ENDIF */
assert(inst->BranchTarget >= 0);
pc = inst->BranchTarget - 1;
}
}
break;
case OPCODE_ELSE:
/* goto ENDIF */
assert(inst->BranchTarget >= 0);
pc = inst->BranchTarget - 1;
break;
case OPCODE_ENDIF:
/* nothing */
break;
case OPCODE_INT: /* float to int */
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = (GLfloat) (GLint) a[0];
result[1] = (GLfloat) (GLint) a[1];
result[2] = (GLfloat) (GLint) a[2];
result[3] = (GLfloat) (GLint) a[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_KIL_NV: /* NV_f_p only (conditional) */
if (eval_condition(machine, inst)) {
return GL_FALSE;
}
break;
case OPCODE_KIL: /* ARB_f_p only */
{
GLfloat a[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
return GL_FALSE;
}
}
break;
case OPCODE_LG2: /* log base 2 */
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = result[1] = result[2] = result[3] = LOG2(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_LIT:
{
const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = MAX2(a[0], 0.0F);
a[1] = MAX2(a[1], 0.0F);
/* XXX ARB version clamps a[3], NV version doesn't */
a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
result[0] = 1.0F;
result[1] = a[0];
/* XXX we could probably just use pow() here */
if (a[0] > 0.0F) {
if (a[1] == 0.0 && a[3] == 0.0)
result[2] = 1.0;
else
result[2] = EXPF(a[3] * LOGF(a[1]));
}
else {
result[2] = 0.0;
}
result[3] = 1.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3]);
}
}
break;
case OPCODE_LOG:
{
GLfloat t[4], q[4], abs_t0;
fetch_vector1(&inst->SrcReg[0], machine, t);
abs_t0 = FABSF(t[0]);
if (abs_t0 != 0.0F) {
/* Since we really can't handle infinite values on VMS
* like other OSes we'll use __MAXFLOAT to represent
* infinity. This may need some tweaking.
*/
#ifdef VMS
if (abs_t0 == __MAXFLOAT)
#else
if (IS_INF_OR_NAN(abs_t0))
#endif
{
SET_POS_INFINITY(q[0]);
q[1] = 1.0F;
SET_POS_INFINITY(q[2]);
}
else {
int exponent;
GLfloat mantissa = FREXPF(t[0], &exponent);
q[0] = (GLfloat) (exponent - 1);
q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
q[2] = (GLfloat) (q[0] + LOG2(q[1]));
}
}
else {
SET_NEG_INFINITY(q[0]);
q[1] = 1.0F;
SET_NEG_INFINITY(q[2]);
}
q[3] = 1.0;
store_vector4(inst, machine, q);
}
break;
case OPCODE_LRP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("LRP (%g %g %g %g) = (%g %g %g %g), "
"(%g %g %g %g), (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
}
}
break;
case OPCODE_MAD:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] * b[0] + c[0];
result[1] = a[1] * b[1] + c[1];
result[2] = a[2] * b[2] + c[2];
result[3] = a[3] * b[3] + c[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
"(%g %g %g %g) + (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
}
}
break;
case OPCODE_MAX:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = MAX2(a[0], b[0]);
result[1] = MAX2(a[1], b[1]);
result[2] = MAX2(a[2], b[2]);
result[3] = MAX2(a[3], b[3]);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_MIN:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = MIN2(a[0], b[0]);
result[1] = MIN2(a[1], b[1]);
result[2] = MIN2(a[2], b[2]);
result[3] = MIN2(a[3], b[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_MOV:
{
GLfloat result[4];
fetch_vector4(&inst->SrcReg[0], machine, result);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MOV (%g %g %g %g)\n",
result[0], result[1], result[2], result[3]);
}
}
break;
case OPCODE_MUL:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[0] * b[0];
result[1] = a[1] * b[1];
result[2] = a[2] * b[2];
result[3] = a[3] * b[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_NOISE1:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] = result[3] = _slang_library_noise1(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOISE2:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] = result[3] = _slang_library_noise2(a[0], a[1]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOISE3:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] =
result[3] = _slang_library_noise3(a[0], a[1], a[2]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOISE4:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] =
result[3] = _slang_library_noise4(a[0], a[1], a[2], a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOP:
break;
case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
{
GLfloat a[4], result[4];
GLhalfNV hx, hy;
GLuint *rawResult = (GLuint *) result;
GLuint twoHalves;
fetch_vector4(&inst->SrcReg[0], machine, a);
hx = _mesa_float_to_half(a[0]);
hy = _mesa_float_to_half(a[1]);
twoHalves = hx | (hy << 16);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= twoHalves;
store_vector4(inst, machine, result);
}
break;
case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
{
GLfloat a[4], result[4];
GLuint usx, usy, *rawResult = (GLuint *) result;
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
usx = IROUND(a[0] * 65535.0F);
usy = IROUND(a[1] * 65535.0F);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= usx | (usy << 16);
store_vector4(inst, machine, result);
}
break;
case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
{
GLfloat a[4], result[4];
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
ubx = IROUND(127.0F * a[0] + 128.0F);
uby = IROUND(127.0F * a[1] + 128.0F);
ubz = IROUND(127.0F * a[2] + 128.0F);
ubw = IROUND(127.0F * a[3] + 128.0F);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4(inst, machine, result);
}
break;
case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
{
GLfloat a[4], result[4];
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
a[2] = CLAMP(a[2], 0.0F, 1.0F);
a[3] = CLAMP(a[3], 0.0F, 1.0F);
ubx = IROUND(255.0F * a[0]);
uby = IROUND(255.0F * a[1]);
ubz = IROUND(255.0F * a[2]);
ubw = IROUND(255.0F * a[3]);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4(inst, machine, result);
}
break;
case OPCODE_POW:
{
GLfloat a[4], b[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
fetch_vector1(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3]
= (GLfloat) _mesa_pow(a[0], b[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_RCP:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
if (DEBUG_PROG) {
if (a[0] == 0)
printf("RCP(0)\n");
else if (IS_INF_OR_NAN(a[0]))
printf("RCP(inf)\n");
}
result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
store_vector4(inst, machine, result);
}
break;
case OPCODE_RET: /* return from subroutine (conditional) */
if (eval_condition(machine, inst)) {
if (machine->StackDepth == 0) {
return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
}
/* subtract one because of pc++ in the for loop */
pc = machine->CallStack[--machine->StackDepth] - 1;
}
break;
case OPCODE_RFL: /* reflection vector */
{
GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
fetch_vector4(&inst->SrcReg[0], machine, axis);
fetch_vector4(&inst->SrcReg[1], machine, dir);
tmpW = DOT3(axis, axis);
tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
result[0] = tmpX * axis[0] - dir[0];
result[1] = tmpX * axis[1] - dir[1];
result[2] = tmpX * axis[2] - dir[2];
/* result[3] is never written! XXX enforce in parser! */
store_vector4(inst, machine, result);
}
break;
case OPCODE_RSQ: /* 1 / sqrt() */
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
a[0] = FABSF(a[0]);
result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
}
}
break;
case OPCODE_SCS: /* sine and cos */
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = (GLfloat) _mesa_cos(a[0]);
result[1] = (GLfloat) _mesa_sin(a[0]);
result[2] = 0.0; /* undefined! */
result[3] = 0.0; /* undefined! */
store_vector4(inst, machine, result);
}
break;
case OPCODE_SEQ: /* set on equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SEQ (%g %g %g %g) = (%g %g %g %g) == (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SFL: /* set false, operands ignored */
{
static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
store_vector4(inst, machine, result);
}
break;
case OPCODE_SGE: /* set on greater or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SGT: /* set on greater */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SGT (%g %g %g %g) = (%g %g %g %g) > (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SIN:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = result[1] = result[2] = result[3]
= (GLfloat) _mesa_sin(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_SLE: /* set on less or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SLE (%g %g %g %g) = (%g %g %g %g) <= (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SLT: /* set on less */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SNE: /* set on not equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SNE (%g %g %g %g) = (%g %g %g %g) != (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_STR: /* set true, operands ignored */
{
static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
store_vector4(inst, machine, result);
}
break;
case OPCODE_SUB:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[0] - b[0];
result[1] = a[1] - b[1];
result[2] = a[2] - b[2];
result[3] = a[3] - b[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SWZ: /* extended swizzle */
{
const struct prog_src_register *source = &inst->SrcReg[0];
const GLfloat *src = get_register_pointer(source, machine);
GLfloat result[4];
GLuint i;
for (i = 0; i < 4; i++) {
const GLuint swz = GET_SWZ(source->Swizzle, i);
if (swz == SWIZZLE_ZERO)
result[i] = 0.0;
else if (swz == SWIZZLE_ONE)
result[i] = 1.0;
else {
ASSERT(swz >= 0);
ASSERT(swz <= 3);
result[i] = src[swz];
}
if (source->NegateBase & (1 << i))
result[i] = -result[i];
}
store_vector4(inst, machine, result);
}
break;
case OPCODE_TEX: /* Both ARB and NV frag prog */
/* Simple texel lookup */
{
GLfloat texcoord[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
if (DEBUG_PROG) {
printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
color[0], color[1], color[2], color[3],
inst->TexSrcUnit,
texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
}
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXB: /* GL_ARB_fragment_program only */
/* Texel lookup with LOD bias */
{
const struct gl_texture_unit *texUnit
= &ctx->Texture.Unit[inst->TexSrcUnit];
GLfloat texcoord[4], color[4], lodBias;
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
/* texcoord[3] is the bias to add to lambda */
lodBias = texUnit->LodBias + texcoord[3];
if (texUnit->_Current) {
lodBias += texUnit->_Current->LodBias;
}
fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXD: /* GL_NV_fragment_program only */
/* Texture lookup w/ partial derivatives for LOD */
{
GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
fetch_vector4(&inst->SrcReg[1], machine, dtdx);
fetch_vector4(&inst->SrcReg[2], machine, dtdy);
machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
0.0, /* lodBias */
inst->TexSrcUnit, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXP: /* GL_ARB_fragment_program only */
/* Texture lookup w/ projective divide */
{
GLfloat texcoord[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
/* Not so sure about this test - if texcoord[3] is
* zero, we'd probably be fine except for an ASSERT in
* IROUND_POS() which gets triggered by the inf values created.
*/
if (texcoord[3] != 0.0) {
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
}
fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
/* Texture lookup w/ projective divide, as above, but do not
* do the divide by w if sampling from a cube map.
*/
{
GLfloat texcoord[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
texcoord[3] != 0.0) {
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
}
fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_UP2H: /* unpack two 16-bit floats */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
GLhalfNV hx, hy;
fetch_vector1(&inst->SrcReg[0], machine, a);
hx = rawBits[0] & 0xffff;
hy = rawBits[0] >> 16;
result[0] = result[2] = _mesa_half_to_float(hx);
result[1] = result[3] = _mesa_half_to_float(hy);
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP2US: /* unpack two GLushorts */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
GLushort usx, usy;
fetch_vector1(&inst->SrcReg[0], machine, a);
usx = rawBits[0] & 0xffff;
usy = rawBits[0] >> 16;
result[0] = result[2] = usx * (1.0f / 65535.0f);
result[1] = result[3] = usy * (1.0f / 65535.0f);
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP4B: /* unpack four GLbytes */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F;
result[1] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F;
result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP4UB: /* unpack four GLubytes */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F;
result[1] = ((rawBits[0] >> 8) & 0xff) / 255.0F;
result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
store_vector4(inst, machine, result);
}
break;
case OPCODE_XPD: /* cross product */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
result[3] = 1.0;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], b[0], b[1], b[2]);
}
}
break;
case OPCODE_X2D: /* 2-D matrix transform */
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_PRINT:
{
if (inst->SrcReg[0].File != -1) {
GLfloat a[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
_mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
a[0], a[1], a[2], a[3]);
}
else {
_mesa_printf("%s\n", (const char *) inst->Data);
}
}
break;
case OPCODE_END:
return GL_TRUE;
default:
_mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
inst->Opcode);
return GL_TRUE; /* return value doesn't matter */
}
numExec++;
if (numExec > maxExec) {
_mesa_problem(ctx, "Infinite loop detected in fragment program");
return GL_TRUE;
}
} /* for pc */
#if FEATURE_MESA_program_debug
CurrentMachine = NULL;
#endif
return GL_TRUE;
}