blob: b74f794d09060d0717f350b64292befd5faf38fc [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 6.5.2
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "context.h"
#include "macros.h"
#include "imports.h"
#include "fbobject.h"
#include "s_accum.h"
#include "s_context.h"
#include "s_masking.h"
#include "s_span.h"
/* XXX this would have to change for accum buffers with more or less
* than 16 bits per color channel.
*/
#define ACCUM_SCALE16 32767.0
/*
* Accumulation buffer notes
*
* Normally, accumulation buffer values are GLshorts with values in
* [-32767, 32767] which represent floating point colors in [-1, 1],
* as defined by the OpenGL specification.
*
* We optimize for the common case used for full-scene antialiasing:
* // start with accum buffer cleared to zero
* glAccum(GL_LOAD, w); // or GL_ACCUM the first image
* glAccum(GL_ACCUM, w);
* ...
* glAccum(GL_ACCUM, w);
* glAccum(GL_RETURN, 1.0);
* That is, we start with an empty accumulation buffer and accumulate
* n images, each with weight w = 1/n.
* In this scenario, we can simply store unscaled integer values in
* the accum buffer instead of scaled integers. We'll also keep track
* of the w value so when we do GL_RETURN we simply divide the accumulated
* values by n (n=1/w).
* This lets us avoid _many_ int->float->int conversions.
*/
#if CHAN_BITS == 8
/* enable the optimization */
#define USE_OPTIMIZED_ACCUM 1
#else
#define USE_OPTIMIZED_ACCUM 0
#endif
/**
* This is called when we fall out of optimized/unscaled accum buffer mode.
* That is, we convert each unscaled accum buffer value into a scaled value
* representing the range[-1, 1].
*/
static void
rescale_accum( GLcontext *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_renderbuffer *rb
= ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
const GLfloat s = swrast->_IntegerAccumScaler * (32767.0F / CHAN_MAXF);
assert(rb);
assert(rb->_BaseFormat == GL_RGBA);
/* add other types in future? */
assert(rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT);
assert(swrast->_IntegerAccumMode);
if (rb->GetPointer(ctx, rb, 0, 0)) {
/* directly-addressable memory */
GLuint y;
for (y = 0; y < rb->Height; y++) {
GLuint i;
GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, 0, y);
for (i = 0; i < 4 * rb->Width; i++) {
acc[i] = (GLshort) (acc[i] * s);
}
}
}
else {
/* use get/put row funcs */
GLuint y;
for (y = 0; y < rb->Height; y++) {
GLshort accRow[MAX_WIDTH * 4];
GLuint i;
rb->GetRow(ctx, rb, rb->Width, 0, y, accRow);
for (i = 0; i < 4 * rb->Width; i++) {
accRow[i] = (GLshort) (accRow[i] * s);
}
rb->PutRow(ctx, rb, rb->Width, 0, y, accRow, NULL);
}
}
swrast->_IntegerAccumMode = GL_FALSE;
}
/**
* Clear the accumulation Buffer.
*/
void
_swrast_clear_accum_buffer( GLcontext *ctx, struct gl_renderbuffer *rb )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLuint x, y, width, height;
if (ctx->Visual.accumRedBits == 0) {
/* No accumulation buffer! Not an error. */
return;
}
if (!rb || !rb->Data)
return;
assert(rb->_BaseFormat == GL_RGBA);
/* add other types in future? */
assert(rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT);
/* bounds, with scissor */
x = ctx->DrawBuffer->_Xmin;
y = ctx->DrawBuffer->_Ymin;
width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin;
height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin;
if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
const GLfloat accScale = 32767.0;
GLshort clearVal[4];
GLuint i;
clearVal[0] = (GLshort) (ctx->Accum.ClearColor[0] * accScale);
clearVal[1] = (GLshort) (ctx->Accum.ClearColor[1] * accScale);
clearVal[2] = (GLshort) (ctx->Accum.ClearColor[2] * accScale);
clearVal[3] = (GLshort) (ctx->Accum.ClearColor[3] * accScale);
for (i = 0; i < height; i++) {
rb->PutMonoRow(ctx, rb, width, x, y + i, clearVal, NULL);
}
}
else {
/* someday support other sizes */
}
/* update optimized accum state vars */
if (ctx->Accum.ClearColor[0] == 0.0 && ctx->Accum.ClearColor[1] == 0.0 &&
ctx->Accum.ClearColor[2] == 0.0 && ctx->Accum.ClearColor[3] == 0.0) {
#if USE_OPTIMIZED_ACCUM
swrast->_IntegerAccumMode = GL_TRUE;
#else
swrast->_IntegerAccumMode = GL_FALSE;
#endif
swrast->_IntegerAccumScaler = 0.0; /* denotes empty accum buffer */
}
else {
swrast->_IntegerAccumMode = GL_FALSE;
}
}
static void
accum_add(GLcontext *ctx, GLfloat value,
GLint xpos, GLint ypos, GLint width, GLint height )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_renderbuffer *rb
= ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
assert(rb);
/* Leave optimized accum buffer mode */
if (swrast->_IntegerAccumMode)
rescale_accum(ctx);
if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
const GLshort incr = (GLshort) (value * ACCUM_SCALE16);
if (rb->GetPointer(ctx, rb, 0, 0)) {
GLint i, j;
for (i = 0; i < height; i++) {
GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i);
for (j = 0; j < 4 * width; j++) {
acc[j] += incr;
}
}
}
else {
GLint i, j;
for (i = 0; i < height; i++) {
GLshort accRow[4 * MAX_WIDTH];
rb->GetRow(ctx, rb, width, xpos, ypos + i, accRow);
for (j = 0; j < 4 * width; j++) {
accRow[j] += incr;
}
rb->PutRow(ctx, rb, width, xpos, ypos + i, accRow, NULL);
}
}
}
else {
/* other types someday */
}
}
static void
accum_mult(GLcontext *ctx, GLfloat mult,
GLint xpos, GLint ypos, GLint width, GLint height )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_renderbuffer *rb
= ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
assert(rb);
/* Leave optimized accum buffer mode */
if (swrast->_IntegerAccumMode)
rescale_accum(ctx);
if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
if (rb->GetPointer(ctx, rb, 0, 0)) {
GLint i, j;
for (i = 0; i < height; i++) {
GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i);
for (j = 0; j < 4 * width; j++) {
acc[j] = (GLshort) (acc[j] * mult);
}
}
}
else {
GLint i, j;
for (i = 0; i < height; i++) {
GLshort accRow[4 * MAX_WIDTH];
rb->GetRow(ctx, rb, width, xpos, ypos + i, accRow);
for (j = 0; j < 4 * width; j++) {
accRow[j] = (GLshort) (accRow[j] * mult);
}
rb->PutRow(ctx, rb, width, xpos, ypos + i, accRow, NULL);
}
}
}
else {
/* other types someday */
}
}
static void
accum_accum(GLcontext *ctx, GLfloat value,
GLint xpos, GLint ypos, GLint width, GLint height )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_renderbuffer *rb
= ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL);
assert(rb);
if (!ctx->ReadBuffer->_ColorReadBuffer) {
/* no read buffer - OK */
return;
}
/* May have to leave optimized accum buffer mode */
if (swrast->_IntegerAccumScaler == 0.0 && value > 0.0 && value <= 1.0)
swrast->_IntegerAccumScaler = value;
if (swrast->_IntegerAccumMode && value != swrast->_IntegerAccumScaler)
rescale_accum(ctx);
if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF;
GLshort accumRow[4 * MAX_WIDTH];
GLchan rgba[MAX_WIDTH][4];
GLint i;
for (i = 0; i < height; i++) {
GLshort *acc;
if (directAccess) {
acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i);
}
else {
rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow);
acc = accumRow;
}
/* read colors from color buffer */
_swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width,
xpos, ypos + i, CHAN_TYPE, rgba);
/* do accumulation */
if (swrast->_IntegerAccumMode) {
/* simply add integer color values into accum buffer */
GLint j;
for (j = 0; j < width; j++) {
acc[j * 4 + 0] += rgba[j][RCOMP];
acc[j * 4 + 1] += rgba[j][GCOMP];
acc[j * 4 + 2] += rgba[j][BCOMP];
acc[j * 4 + 3] += rgba[j][ACOMP];
}
}
else {
/* scaled integer (or float) accum buffer */
GLint j;
for (j = 0; j < width; j++) {
acc[j * 4 + 0] += (GLshort) ((GLfloat) rgba[j][RCOMP] * scale);
acc[j * 4 + 1] += (GLshort) ((GLfloat) rgba[j][GCOMP] * scale);
acc[j * 4 + 2] += (GLshort) ((GLfloat) rgba[j][BCOMP] * scale);
acc[j * 4 + 3] += (GLshort) ((GLfloat) rgba[j][ACOMP] * scale);
}
}
if (!directAccess) {
rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL);
}
}
}
else {
/* other types someday */
}
}
static void
accum_load(GLcontext *ctx, GLfloat value,
GLint xpos, GLint ypos, GLint width, GLint height )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_renderbuffer *rb
= ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL);
assert(rb);
if (!ctx->ReadBuffer->_ColorReadBuffer) {
/* no read buffer - OK */
return;
}
/* This is a change to go into optimized accum buffer mode */
if (value > 0.0 && value <= 1.0) {
#if USE_OPTIMIZED_ACCUM
swrast->_IntegerAccumMode = GL_TRUE;
#else
swrast->_IntegerAccumMode = GL_FALSE;
#endif
swrast->_IntegerAccumScaler = value;
}
else {
swrast->_IntegerAccumMode = GL_FALSE;
swrast->_IntegerAccumScaler = 0.0;
}
if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF;
GLshort accumRow[4 * MAX_WIDTH];
GLchan rgba[MAX_WIDTH][4];
GLint i;
for (i = 0; i < height; i++) {
GLshort *acc;
if (directAccess) {
acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i);
}
else {
rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow);
acc = accumRow;
}
/* read colors from color buffer */
_swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width,
xpos, ypos + i, CHAN_TYPE, rgba);
/* do load */
if (swrast->_IntegerAccumMode) {
/* just copy values in */
GLint j;
assert(swrast->_IntegerAccumScaler > 0.0);
assert(swrast->_IntegerAccumScaler <= 1.0);
for (j = 0; j < width; j++) {
acc[j * 4 + 0] = rgba[j][RCOMP];
acc[j * 4 + 1] = rgba[j][GCOMP];
acc[j * 4 + 2] = rgba[j][BCOMP];
acc[j * 4 + 3] = rgba[j][ACOMP];
}
}
else {
/* scaled integer (or float) accum buffer */
GLint j;
for (j = 0; j < width; j++) {
acc[j * 4 + 0] = (GLshort) ((GLfloat) rgba[j][RCOMP] * scale);
acc[j * 4 + 1] = (GLshort) ((GLfloat) rgba[j][GCOMP] * scale);
acc[j * 4 + 2] = (GLshort) ((GLfloat) rgba[j][BCOMP] * scale);
acc[j * 4 + 3] = (GLshort) ((GLfloat) rgba[j][ACOMP] * scale);
}
}
if (!directAccess) {
rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL);
}
}
}
}
static void
accum_return(GLcontext *ctx, GLfloat value,
GLint xpos, GLint ypos, GLint width, GLint height )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_framebuffer *fb = ctx->DrawBuffer;
struct gl_renderbuffer *accumRb = fb->Attachment[BUFFER_ACCUM].Renderbuffer;
const GLboolean directAccess
= (accumRb->GetPointer(ctx, accumRb, 0, 0) != NULL);
const GLboolean masking = (!ctx->Color.ColorMask[RCOMP] ||
!ctx->Color.ColorMask[GCOMP] ||
!ctx->Color.ColorMask[BCOMP] ||
!ctx->Color.ColorMask[ACOMP]);
static GLchan multTable[32768];
static GLfloat prevMult = 0.0;
const GLfloat mult = swrast->_IntegerAccumScaler;
const GLint max = MIN2((GLint) (256 / mult), 32767);
/* May have to leave optimized accum buffer mode */
if (swrast->_IntegerAccumMode && value != 1.0)
rescale_accum(ctx);
if (swrast->_IntegerAccumMode && swrast->_IntegerAccumScaler > 0) {
/* build lookup table to avoid many floating point multiplies */
GLint j;
assert(swrast->_IntegerAccumScaler <= 1.0);
if (mult != prevMult) {
for (j = 0; j < max; j++)
multTable[j] = IROUND((GLfloat) j * mult);
prevMult = mult;
}
}
if (accumRb->DataType == GL_SHORT ||
accumRb->DataType == GL_UNSIGNED_SHORT) {
const GLfloat scale = value * CHAN_MAXF / ACCUM_SCALE16;
GLuint buffer;
GLint i;
/* XXX maybe transpose the 'i' and 'buffer' loops??? */
for (i = 0; i < height; i++) {
GLshort accumRow[4 * MAX_WIDTH];
GLshort *acc;
SWspan span;
/* init color span */
INIT_SPAN(span, GL_BITMAP);
span.end = width;
span.arrayMask = SPAN_RGBA;
span.x = xpos;
span.y = ypos + i;
if (directAccess) {
acc = (GLshort *) accumRb->GetPointer(ctx, accumRb, xpos, ypos +i);
}
else {
accumRb->GetRow(ctx, accumRb, width, xpos, ypos + i, accumRow);
acc = accumRow;
}
/* get the colors to return */
if (swrast->_IntegerAccumMode) {
GLint j;
for (j = 0; j < width; j++) {
ASSERT(acc[j * 4 + 0] < max);
ASSERT(acc[j * 4 + 1] < max);
ASSERT(acc[j * 4 + 2] < max);
ASSERT(acc[j * 4 + 3] < max);
span.array->rgba[j][RCOMP] = multTable[acc[j * 4 + 0]];
span.array->rgba[j][GCOMP] = multTable[acc[j * 4 + 1]];
span.array->rgba[j][BCOMP] = multTable[acc[j * 4 + 2]];
span.array->rgba[j][ACOMP] = multTable[acc[j * 4 + 3]];
}
}
else {
/* scaled integer (or float) accum buffer */
GLint j;
for (j = 0; j < width; j++) {
#if CHAN_BITS==32
GLchan r = acc[j * 4 + 0] * scale;
GLchan g = acc[j * 4 + 1] * scale;
GLchan b = acc[j * 4 + 2] * scale;
GLchan a = acc[j * 4 + 3] * scale;
#else
GLint r = IROUND( (GLfloat) (acc[j * 4 + 0]) * scale );
GLint g = IROUND( (GLfloat) (acc[j * 4 + 1]) * scale );
GLint b = IROUND( (GLfloat) (acc[j * 4 + 2]) * scale );
GLint a = IROUND( (GLfloat) (acc[j * 4 + 3]) * scale );
#endif
span.array->rgba[j][RCOMP] = CLAMP( r, 0, CHAN_MAX );
span.array->rgba[j][GCOMP] = CLAMP( g, 0, CHAN_MAX );
span.array->rgba[j][BCOMP] = CLAMP( b, 0, CHAN_MAX );
span.array->rgba[j][ACOMP] = CLAMP( a, 0, CHAN_MAX );
}
}
/* store colors */
for (buffer = 0; buffer < fb->_NumColorDrawBuffers; buffer++) {
struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buffer];
if (masking) {
_swrast_mask_rgba_span(ctx, rb, &span);
}
rb->PutRow(ctx, rb, width, xpos, ypos + i, span.array->rgba, NULL);
}
}
}
else {
/* other types someday */
}
}
/**
* Software fallback for glAccum.
*/
void
_swrast_Accum(GLcontext *ctx, GLenum op, GLfloat value)
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLint xpos, ypos, width, height;
if (SWRAST_CONTEXT(ctx)->NewState)
_swrast_validate_derived( ctx );
if (!ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer) {
_mesa_warning(ctx, "Calling glAccum() without an accumulation buffer");
return;
}
RENDER_START(swrast, ctx);
/* Compute region after calling RENDER_START so that we know the
* drawbuffer's size/bounds are up to date.
*/
xpos = ctx->DrawBuffer->_Xmin;
ypos = ctx->DrawBuffer->_Ymin;
width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin;
height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin;
switch (op) {
case GL_ADD:
if (value != 0.0F) {
accum_add(ctx, value, xpos, ypos, width, height);
}
break;
case GL_MULT:
if (value != 1.0F) {
accum_mult(ctx, value, xpos, ypos, width, height);
}
break;
case GL_ACCUM:
if (value != 0.0F) {
accum_accum(ctx, value, xpos, ypos, width, height);
}
break;
case GL_LOAD:
accum_load(ctx, value, xpos, ypos, width, height);
break;
case GL_RETURN:
accum_return(ctx, value, xpos, ypos, width, height);
break;
default:
_mesa_problem(ctx, "invalid mode in _swrast_Accum()");
break;
}
RENDER_FINISH(swrast, ctx);
}