blob: 4ac7222daa585a0fd034cf149101fde8728cd370 [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 6.5.1
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "context.h"
#include "colormac.h"
#include "imports.h"
#include "macros.h"
#include "pixel.h"
#include "s_context.h"
#include "s_texcombine.h"
#define PROD(A,B) ( (GLuint)(A) * ((GLuint)(B)+1) )
#define S_PROD(A,B) ( (GLint)(A) * ((GLint)(B)+1) )
#if CHAN_BITS == 32
typedef GLfloat ChanTemp;
#else
typedef GLuint ChanTemp;
#endif
/**
* Do texture application for GL_ARB/EXT_texture_env_combine.
* This function also supports GL_{EXT,ARB}_texture_env_dot3 and
* GL_ATI_texture_env_combine3. Since "classic" texture environments are
* implemented using GL_ARB_texture_env_combine-like state, this same function
* is used for classic texture environment application as well.
*
* \param ctx rendering context
* \param textureUnit the texture unit to apply
* \param n number of fragments to process (span width)
* \param primary_rgba incoming fragment color array
* \param texelBuffer pointer to texel colors for all texture units
*
* \param rgba incoming colors, which get modified here
*/
static void
texture_combine( const GLcontext *ctx, GLuint unit, GLuint n,
CONST GLchan (*primary_rgba)[4],
CONST GLchan *texelBuffer,
GLchan (*rgba)[4] )
{
const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]);
const GLchan (*argRGB [3])[4];
const GLchan (*argA [3])[4];
const GLuint RGBshift = textureUnit->_CurrentCombine->ScaleShiftRGB;
const GLuint Ashift = textureUnit->_CurrentCombine->ScaleShiftA;
#if CHAN_TYPE == GL_FLOAT
const GLchan RGBmult = (GLfloat) (1 << RGBshift);
const GLchan Amult = (GLfloat) (1 << Ashift);
#else
const GLint half = (CHAN_MAX + 1) / 2;
#endif
static const GLchan one[4] = { CHAN_MAX, CHAN_MAX, CHAN_MAX, CHAN_MAX };
static const GLchan zero[4] = { 0, 0, 0, 0 };
const GLuint numColorArgs = textureUnit->_CurrentCombine->_NumArgsRGB;
const GLuint numAlphaArgs = textureUnit->_CurrentCombine->_NumArgsA;
GLchan ccolor[3][MAX_WIDTH][4];
GLuint i, j;
ASSERT(ctx->Extensions.EXT_texture_env_combine ||
ctx->Extensions.ARB_texture_env_combine);
ASSERT(SWRAST_CONTEXT(ctx)->_AnyTextureCombine);
/*
printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n",
textureUnit->_CurrentCombine->ModeRGB,
textureUnit->_CurrentCombine->ModeA,
textureUnit->_CurrentCombine->SourceRGB[0],
textureUnit->_CurrentCombine->SourceA[0],
textureUnit->_CurrentCombine->SourceRGB[1],
textureUnit->_CurrentCombine->SourceA[1]);
*/
/*
* Do operand setup for up to 3 operands. Loop over the terms.
*/
for (j = 0; j < numColorArgs; j++) {
const GLenum srcRGB = textureUnit->_CurrentCombine->SourceRGB[j];
switch (srcRGB) {
case GL_TEXTURE:
argRGB[j] = (const GLchan (*)[4])
(texelBuffer + unit * (n * 4 * sizeof(GLchan)));
break;
case GL_PRIMARY_COLOR:
argRGB[j] = primary_rgba;
break;
case GL_PREVIOUS:
argRGB[j] = (const GLchan (*)[4]) rgba;
break;
case GL_CONSTANT:
{
GLchan (*c)[4] = ccolor[j];
GLchan red, green, blue, alpha;
UNCLAMPED_FLOAT_TO_CHAN(red, textureUnit->EnvColor[0]);
UNCLAMPED_FLOAT_TO_CHAN(green, textureUnit->EnvColor[1]);
UNCLAMPED_FLOAT_TO_CHAN(blue, textureUnit->EnvColor[2]);
UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]);
for (i = 0; i < n; i++) {
c[i][RCOMP] = red;
c[i][GCOMP] = green;
c[i][BCOMP] = blue;
c[i][ACOMP] = alpha;
}
argRGB[j] = (const GLchan (*)[4]) ccolor[j];
}
break;
/* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
*/
case GL_ZERO:
argRGB[j] = & zero;
break;
case GL_ONE:
argRGB[j] = & one;
break;
default:
/* ARB_texture_env_crossbar source */
{
const GLuint srcUnit = srcRGB - GL_TEXTURE0;
ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
return;
argRGB[j] = (const GLchan (*)[4])
(texelBuffer + srcUnit * (n * 4 * sizeof(GLchan)));
}
}
if (textureUnit->_CurrentCombine->OperandRGB[j] != GL_SRC_COLOR) {
const GLchan (*src)[4] = argRGB[j];
GLchan (*dst)[4] = ccolor[j];
/* point to new arg[j] storage */
argRGB[j] = (const GLchan (*)[4]) ccolor[j];
if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) {
for (i = 0; i < n; i++) {
dst[i][RCOMP] = CHAN_MAX - src[i][RCOMP];
dst[i][GCOMP] = CHAN_MAX - src[i][GCOMP];
dst[i][BCOMP] = CHAN_MAX - src[i][BCOMP];
}
}
else if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_SRC_ALPHA) {
for (i = 0; i < n; i++) {
dst[i][RCOMP] = src[i][ACOMP];
dst[i][GCOMP] = src[i][ACOMP];
dst[i][BCOMP] = src[i][ACOMP];
}
}
else {
ASSERT(textureUnit->_CurrentCombine->OperandRGB[j] ==GL_ONE_MINUS_SRC_ALPHA);
for (i = 0; i < n; i++) {
dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP];
dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP];
dst[i][BCOMP] = CHAN_MAX - src[i][ACOMP];
}
}
}
}
/*
* Set up the argA[i] pointers
*/
for (j = 0; j < numAlphaArgs; j++) {
const GLenum srcA = textureUnit->_CurrentCombine->SourceA[j];
switch (srcA) {
case GL_TEXTURE:
argA[j] = (const GLchan (*)[4])
(texelBuffer + unit * (n * 4 * sizeof(GLchan)));
break;
case GL_PRIMARY_COLOR:
argA[j] = primary_rgba;
break;
case GL_PREVIOUS:
argA[j] = (const GLchan (*)[4]) rgba;
break;
case GL_CONSTANT:
{
GLchan alpha, (*c)[4] = ccolor[j];
UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]);
for (i = 0; i < n; i++)
c[i][ACOMP] = alpha;
argA[j] = (const GLchan (*)[4]) ccolor[j];
}
break;
/* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
*/
case GL_ZERO:
argA[j] = & zero;
break;
case GL_ONE:
argA[j] = & one;
break;
default:
/* ARB_texture_env_crossbar source */
{
const GLuint srcUnit = srcA - GL_TEXTURE0;
ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
return;
argA[j] = (const GLchan (*)[4])
(texelBuffer + srcUnit * (n * 4 * sizeof(GLchan)));
}
}
if (textureUnit->_CurrentCombine->OperandA[j] == GL_ONE_MINUS_SRC_ALPHA) {
const GLchan (*src)[4] = argA[j];
GLchan (*dst)[4] = ccolor[j];
argA[j] = (const GLchan (*)[4]) ccolor[j];
for (i = 0; i < n; i++) {
dst[i][ACOMP] = CHAN_MAX - src[i][ACOMP];
}
}
}
/*
* Do the texture combine.
*/
switch (textureUnit->_CurrentCombine->ModeRGB) {
case GL_REPLACE:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
if (RGBshift) {
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = arg0[i][RCOMP] * RGBmult;
rgba[i][GCOMP] = arg0[i][GCOMP] * RGBmult;
rgba[i][BCOMP] = arg0[i][BCOMP] * RGBmult;
#else
GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift;
GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift;
GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift;
rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
#endif
}
}
else {
for (i = 0; i < n; i++) {
rgba[i][RCOMP] = arg0[i][RCOMP];
rgba[i][GCOMP] = arg0[i][GCOMP];
rgba[i][BCOMP] = arg0[i][BCOMP];
}
}
}
break;
case GL_MODULATE:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - RGBshift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * RGBmult;
rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * RGBmult;
rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * RGBmult;
#else
GLuint r = PROD(arg0[i][RCOMP], arg1[i][RCOMP]) >> shift;
GLuint g = PROD(arg0[i][GCOMP], arg1[i][GCOMP]) >> shift;
GLuint b = PROD(arg0[i][BCOMP], arg1[i][BCOMP]) >> shift;
rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
#endif
}
}
break;
case GL_ADD:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * RGBmult;
rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * RGBmult;
rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * RGBmult;
#else
GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift;
GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift;
GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift;
rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
#endif
}
}
break;
case GL_ADD_SIGNED:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * RGBmult;
rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * RGBmult;
rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * RGBmult;
#else
GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] -half;
GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] -half;
GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] -half;
r = (r < 0) ? 0 : r << RGBshift;
g = (g < 0) ? 0 : g << RGBshift;
b = (b < 0) ? 0 : b << RGBshift;
rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
#endif
}
}
break;
case GL_INTERPOLATE:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - RGBshift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] +
arg1[i][RCOMP] * (CHAN_MAXF - arg2[i][RCOMP])) * RGBmult;
rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] +
arg1[i][GCOMP] * (CHAN_MAXF - arg2[i][GCOMP])) * RGBmult;
rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] +
arg1[i][BCOMP] * (CHAN_MAXF - arg2[i][BCOMP])) * RGBmult;
#else
GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP])
+ PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP]))
>> shift;
GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP])
+ PROD(arg1[i][GCOMP], CHAN_MAX - arg2[i][GCOMP]))
>> shift;
GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP])
+ PROD(arg1[i][BCOMP], CHAN_MAX - arg2[i][BCOMP]))
>> shift;
rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
#endif
}
}
break;
case GL_SUBTRACT:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * RGBmult;
rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * RGBmult;
rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * RGBmult;
#else
GLint r = ((GLint) arg0[i][RCOMP] - (GLint) arg1[i][RCOMP]) << RGBshift;
GLint g = ((GLint) arg0[i][GCOMP] - (GLint) arg1[i][GCOMP]) << RGBshift;
GLint b = ((GLint) arg0[i][BCOMP] - (GLint) arg1[i][BCOMP]) << RGBshift;
rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
#endif
}
}
break;
case GL_DOT3_RGB_EXT:
case GL_DOT3_RGBA_EXT:
{
/* Do not scale the result by 1 2 or 4 */
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) +
(arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) +
(arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F))
* 4.0F;
dot = CLAMP(dot, 0.0F, CHAN_MAXF);
#else
GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half,
(GLint)arg1[i][RCOMP] - half) +
S_PROD((GLint)arg0[i][GCOMP] - half,
(GLint)arg1[i][GCOMP] - half) +
S_PROD((GLint)arg0[i][BCOMP] - half,
(GLint)arg1[i][BCOMP] - half)) >> 6;
dot = CLAMP(dot, 0, CHAN_MAX);
#endif
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot;
}
}
break;
case GL_DOT3_RGB:
case GL_DOT3_RGBA:
{
/* DO scale the result by 1 2 or 4 */
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) +
(arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) +
(arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F))
* 4.0F * RGBmult;
dot = CLAMP(dot, 0.0, CHAN_MAXF);
#else
GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half,
(GLint)arg1[i][RCOMP] - half) +
S_PROD((GLint)arg0[i][GCOMP] - half,
(GLint)arg1[i][GCOMP] - half) +
S_PROD((GLint)arg0[i][BCOMP] - half,
(GLint)arg1[i][BCOMP] - half)) >> 6;
dot <<= RGBshift;
dot = CLAMP(dot, 0, CHAN_MAX);
#endif
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot;
}
}
break;
case GL_MODULATE_ADD_ATI:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - RGBshift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP]) * RGBmult;
rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP]) * RGBmult;
rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP]) * RGBmult;
#else
GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP])
+ ((GLuint) arg1[i][RCOMP] << CHAN_BITS)) >> shift;
GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP])
+ ((GLuint) arg1[i][GCOMP] << CHAN_BITS)) >> shift;
GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP])
+ ((GLuint) arg1[i][BCOMP] << CHAN_BITS)) >> shift;
rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
#endif
}
}
break;
case GL_MODULATE_SIGNED_ADD_ATI:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - RGBshift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP] - 0.5) * RGBmult;
rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP] - 0.5) * RGBmult;
rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP] - 0.5) * RGBmult;
#else
GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP])
+ (((GLint) arg1[i][RCOMP] - half) << CHAN_BITS))
>> shift;
GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP])
+ (((GLint) arg1[i][GCOMP] - half) << CHAN_BITS))
>> shift;
GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP])
+ (((GLint) arg1[i][BCOMP] - half) << CHAN_BITS))
>> shift;
rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
#endif
}
}
break;
case GL_MODULATE_SUBTRACT_ATI:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - RGBshift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - arg1[i][RCOMP]) * RGBmult;
rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - arg1[i][GCOMP]) * RGBmult;
rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - arg1[i][BCOMP]) * RGBmult;
#else
GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP])
- ((GLint) arg1[i][RCOMP] << CHAN_BITS))
>> shift;
GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP])
- ((GLint) arg1[i][GCOMP] << CHAN_BITS))
>> shift;
GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP])
- ((GLint) arg1[i][BCOMP] << CHAN_BITS))
>> shift;
rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
#endif
}
}
break;
default:
_mesa_problem(ctx, "invalid combine mode");
}
switch (textureUnit->_CurrentCombine->ModeA) {
case GL_REPLACE:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
if (Ashift) {
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
GLchan a = arg0[i][ACOMP] * Amult;
#else
GLuint a = (GLuint) arg0[i][ACOMP] << Ashift;
#endif
rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
}
}
else {
for (i = 0; i < n; i++) {
rgba[i][ACOMP] = arg0[i][ACOMP];
}
}
}
break;
case GL_MODULATE:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - Ashift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * Amult;
#else
GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift);
rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
#endif
}
}
break;
case GL_ADD:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * Amult;
#else
GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift;
rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
#endif
}
}
break;
case GL_ADD_SIGNED:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * Amult;
#else
GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] -half;
a = (a < 0) ? 0 : a << Ashift;
rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
#endif
}
}
break;
case GL_INTERPOLATE:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - Ashift;
#endif
for (i=0; i<n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] +
arg1[i][ACOMP] * (CHAN_MAXF - arg2[i][ACOMP]))
* Amult;
#else
GLuint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP])
+ PROD(arg1[i][ACOMP], CHAN_MAX - arg2[i][ACOMP]))
>> shift;
rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
#endif
}
}
break;
case GL_SUBTRACT:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * Amult;
#else
GLint a = ((GLint) arg0[i][ACOMP] - (GLint) arg1[i][ACOMP]) << Ashift;
rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
#endif
}
}
break;
case GL_MODULATE_ADD_ATI:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - Ashift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP]) * Amult;
#else
GLint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP])
+ ((GLuint) arg1[i][ACOMP] << CHAN_BITS))
>> shift;
rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
#endif
}
}
break;
case GL_MODULATE_SIGNED_ADD_ATI:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - Ashift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP] - 0.5F) * Amult;
#else
GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP])
+ (((GLint) arg1[i][ACOMP] - half) << CHAN_BITS))
>> shift;
rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
#endif
}
}
break;
case GL_MODULATE_SUBTRACT_ATI:
{
const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
#if CHAN_TYPE != GL_FLOAT
const GLint shift = CHAN_BITS - Ashift;
#endif
for (i = 0; i < n; i++) {
#if CHAN_TYPE == GL_FLOAT
rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - arg1[i][ACOMP]) * Amult;
#else
GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP])
- ((GLint) arg1[i][ACOMP] << CHAN_BITS))
>> shift;
rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
#endif
}
}
break;
default:
_mesa_problem(ctx, "invalid combine mode");
}
/* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining.
* This is kind of a kludge. It would have been better if the spec
* were written such that the GL_COMBINE_ALPHA value could be set to
* GL_DOT3.
*/
if (textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA_EXT ||
textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA) {
for (i = 0; i < n; i++) {
rgba[i][ACOMP] = rgba[i][RCOMP];
}
}
}
#undef PROD
/**
* Apply a conventional OpenGL texture env mode (REPLACE, ADD, BLEND,
* MODULATE, or DECAL) to an array of fragments.
* Input: textureUnit - pointer to texture unit to apply
* format - base internal texture format
* n - number of fragments
* primary_rgba - primary colors (may alias rgba for single texture)
* texels - array of texel colors
* InOut: rgba - incoming fragment colors modified by texel colors
* according to the texture environment mode.
*/
static void
texture_apply( const GLcontext *ctx,
const struct gl_texture_unit *texUnit,
GLuint n,
CONST GLchan primary_rgba[][4], CONST GLchan texel[][4],
GLchan rgba[][4] )
{
GLint baseLevel;
GLuint i;
GLchan Rc, Gc, Bc, Ac;
GLenum format;
(void) primary_rgba;
ASSERT(texUnit);
ASSERT(texUnit->_Current);
baseLevel = texUnit->_Current->BaseLevel;
ASSERT(texUnit->_Current->Image[0][baseLevel]);
format = texUnit->_Current->Image[0][baseLevel]->_BaseFormat;
if (format == GL_COLOR_INDEX || format == GL_YCBCR_MESA) {
format = GL_RGBA; /* a bit of a hack */
}
else if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
format = texUnit->_Current->DepthMode;
}
switch (texUnit->EnvMode) {
case GL_REPLACE:
switch (format) {
case GL_ALPHA:
for (i=0;i<n;i++) {
/* Cv = Cf */
/* Av = At */
rgba[i][ACOMP] = texel[i][ACOMP];
}
break;
case GL_LUMINANCE:
for (i=0;i<n;i++) {
/* Cv = Lt */
GLchan Lt = texel[i][RCOMP];
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
/* Av = Af */
}
break;
case GL_LUMINANCE_ALPHA:
for (i=0;i<n;i++) {
GLchan Lt = texel[i][RCOMP];
/* Cv = Lt */
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
/* Av = At */
rgba[i][ACOMP] = texel[i][ACOMP];
}
break;
case GL_INTENSITY:
for (i=0;i<n;i++) {
/* Cv = It */
GLchan It = texel[i][RCOMP];
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = It;
/* Av = It */
rgba[i][ACOMP] = It;
}
break;
case GL_RGB:
for (i=0;i<n;i++) {
/* Cv = Ct */
rgba[i][RCOMP] = texel[i][RCOMP];
rgba[i][GCOMP] = texel[i][GCOMP];
rgba[i][BCOMP] = texel[i][BCOMP];
/* Av = Af */
}
break;
case GL_RGBA:
for (i=0;i<n;i++) {
/* Cv = Ct */
rgba[i][RCOMP] = texel[i][RCOMP];
rgba[i][GCOMP] = texel[i][GCOMP];
rgba[i][BCOMP] = texel[i][BCOMP];
/* Av = At */
rgba[i][ACOMP] = texel[i][ACOMP];
}
break;
default:
_mesa_problem(ctx, "Bad format (GL_REPLACE) in texture_apply");
return;
}
break;
case GL_MODULATE:
switch (format) {
case GL_ALPHA:
for (i=0;i<n;i++) {
/* Cv = Cf */
/* Av = AfAt */
rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
}
break;
case GL_LUMINANCE:
for (i=0;i<n;i++) {
/* Cv = LtCf */
GLchan Lt = texel[i][RCOMP];
rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
/* Av = Af */
}
break;
case GL_LUMINANCE_ALPHA:
for (i=0;i<n;i++) {
/* Cv = CfLt */
GLchan Lt = texel[i][RCOMP];
rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
/* Av = AfAt */
rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
}
break;
case GL_INTENSITY:
for (i=0;i<n;i++) {
/* Cv = CfIt */
GLchan It = texel[i][RCOMP];
rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], It );
rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], It );
rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], It );
/* Av = AfIt */
rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], It );
}
break;
case GL_RGB:
for (i=0;i<n;i++) {
/* Cv = CfCt */
rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
/* Av = Af */
}
break;
case GL_RGBA:
for (i=0;i<n;i++) {
/* Cv = CfCt */
rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
/* Av = AfAt */
rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
}
break;
default:
_mesa_problem(ctx, "Bad format (GL_MODULATE) in texture_apply");
return;
}
break;
case GL_DECAL:
switch (format) {
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
case GL_INTENSITY:
/* undefined */
break;
case GL_RGB:
for (i=0;i<n;i++) {
/* Cv = Ct */
rgba[i][RCOMP] = texel[i][RCOMP];
rgba[i][GCOMP] = texel[i][GCOMP];
rgba[i][BCOMP] = texel[i][BCOMP];
/* Av = Af */
}
break;
case GL_RGBA:
for (i=0;i<n;i++) {
/* Cv = Cf(1-At) + CtAt */
GLchan t = texel[i][ACOMP], s = CHAN_MAX - t;
rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(texel[i][RCOMP],t);
rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(texel[i][GCOMP],t);
rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(texel[i][BCOMP],t);
/* Av = Af */
}
break;
default:
_mesa_problem(ctx, "Bad format (GL_DECAL) in texture_apply");
return;
}
break;
case GL_BLEND:
UNCLAMPED_FLOAT_TO_CHAN(Rc, texUnit->EnvColor[0]);
UNCLAMPED_FLOAT_TO_CHAN(Gc, texUnit->EnvColor[1]);
UNCLAMPED_FLOAT_TO_CHAN(Bc, texUnit->EnvColor[2]);
UNCLAMPED_FLOAT_TO_CHAN(Ac, texUnit->EnvColor[3]);
switch (format) {
case GL_ALPHA:
for (i=0;i<n;i++) {
/* Cv = Cf */
/* Av = AfAt */
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
}
break;
case GL_LUMINANCE:
for (i=0;i<n;i++) {
/* Cv = Cf(1-Lt) + CcLt */
GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
/* Av = Af */
}
break;
case GL_LUMINANCE_ALPHA:
for (i=0;i<n;i++) {
/* Cv = Cf(1-Lt) + CcLt */
GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
/* Av = AfAt */
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
}
break;
case GL_INTENSITY:
for (i=0;i<n;i++) {
/* Cv = Cf(1-It) + CcIt */
GLchan It = texel[i][RCOMP], s = CHAN_MAX - It;
rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, It);
rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, It);
rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, It);
/* Av = Af(1-It) + Ac*It */
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], s) + CHAN_PRODUCT(Ac, It);
}
break;
case GL_RGB:
for (i=0;i<n;i++) {
/* Cv = Cf(1-Ct) + CcCt */
rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
/* Av = Af */
}
break;
case GL_RGBA:
for (i=0;i<n;i++) {
/* Cv = Cf(1-Ct) + CcCt */
rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
/* Av = AfAt */
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
}
break;
default:
_mesa_problem(ctx, "Bad format (GL_BLEND) in texture_apply");
return;
}
break;
/* XXX don't clamp results if GLchan is float??? */
case GL_ADD: /* GL_EXT_texture_add_env */
switch (format) {
case GL_ALPHA:
for (i=0;i<n;i++) {
/* Rv = Rf */
/* Gv = Gf */
/* Bv = Bf */
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
}
break;
case GL_LUMINANCE:
for (i=0;i<n;i++) {
ChanTemp Lt = texel[i][RCOMP];
ChanTemp r = rgba[i][RCOMP] + Lt;
ChanTemp g = rgba[i][GCOMP] + Lt;
ChanTemp b = rgba[i][BCOMP] + Lt;
rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
/* Av = Af */
}
break;
case GL_LUMINANCE_ALPHA:
for (i=0;i<n;i++) {
ChanTemp Lt = texel[i][RCOMP];
ChanTemp r = rgba[i][RCOMP] + Lt;
ChanTemp g = rgba[i][GCOMP] + Lt;
ChanTemp b = rgba[i][BCOMP] + Lt;
rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
}
break;
case GL_INTENSITY:
for (i=0;i<n;i++) {
GLchan It = texel[i][RCOMP];
ChanTemp r = rgba[i][RCOMP] + It;
ChanTemp g = rgba[i][GCOMP] + It;
ChanTemp b = rgba[i][BCOMP] + It;
ChanTemp a = rgba[i][ACOMP] + It;
rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
rgba[i][ACOMP] = MIN2(a, CHAN_MAX);
}
break;
case GL_RGB:
for (i=0;i<n;i++) {
ChanTemp r = rgba[i][RCOMP] + texel[i][RCOMP];
ChanTemp g = rgba[i][GCOMP] + texel[i][GCOMP];
ChanTemp b = rgba[i][BCOMP] + texel[i][BCOMP];
rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
/* Av = Af */
}
break;
case GL_RGBA:
for (i=0;i<n;i++) {
ChanTemp r = rgba[i][RCOMP] + texel[i][RCOMP];
ChanTemp g = rgba[i][GCOMP] + texel[i][GCOMP];
ChanTemp b = rgba[i][BCOMP] + texel[i][BCOMP];
rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
}
break;
default:
_mesa_problem(ctx, "Bad format (GL_ADD) in texture_apply");
return;
}
break;
default:
_mesa_problem(ctx, "Bad env mode in texture_apply");
return;
}
}
/**
* Apply texture mapping to a span of fragments.
*/
void
_swrast_texture_span( GLcontext *ctx, SWspan *span )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLchan primary_rgba[MAX_WIDTH][4];
GLuint unit;
ASSERT(span->end < MAX_WIDTH);
/*
* Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR)
*/
if (swrast->_AnyTextureCombine)
MEMCPY(primary_rgba, span->array->rgba, 4 * span->end * sizeof(GLchan));
/*
* Must do all texture sampling before combining in order to
* accomodate GL_ARB_texture_env_crossbar.
*/
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
if (ctx->Texture.Unit[unit]._ReallyEnabled) {
const GLfloat (*texcoords)[4]
= (const GLfloat (*)[4])
span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
const struct gl_texture_object *curObj = texUnit->_Current;
GLfloat *lambda = span->array->lambda[unit];
GLchan (*texels)[4] = (GLchan (*)[4])
(swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan)));
/* adjust texture lod (lambda) */
if (span->arrayMask & SPAN_LAMBDA) {
if (texUnit->LodBias + curObj->LodBias != 0.0F) {
/* apply LOD bias, but don't clamp yet */
const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
-ctx->Const.MaxTextureLodBias,
ctx->Const.MaxTextureLodBias);
GLuint i;
for (i = 0; i < span->end; i++) {
lambda[i] += bias;
}
}
if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
/* apply LOD clamping to lambda */
const GLfloat min = curObj->MinLod;
const GLfloat max = curObj->MaxLod;
GLuint i;
for (i = 0; i < span->end; i++) {
GLfloat l = lambda[i];
lambda[i] = CLAMP(l, min, max);
}
}
}
/* Sample the texture (span->end = number of fragments) */
swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
texcoords, lambda, texels );
/* GL_SGI_texture_color_table */
if (texUnit->ColorTableEnabled) {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
_mesa_lookup_rgba_ubyte(&texUnit->ColorTable, span->end, texels);
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
_mesa_lookup_rgba_ubyte(&texUnit->ColorTable, span->end, texels);
#else
_mesa_lookup_rgba_float(&texUnit->ColorTable, span->end, texels);
#endif
}
}
}
/*
* OK, now apply the texture (aka texture combine/blend).
* We modify the span->color.rgba values.
*/
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
if (ctx->Texture.Unit[unit]._ReallyEnabled) {
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
if (texUnit->_CurrentCombine != &texUnit->_EnvMode ) {
texture_combine( ctx, unit, span->end,
(CONST GLchan (*)[4]) primary_rgba,
swrast->TexelBuffer,
span->array->rgba );
}
else {
/* conventional texture blend */
const GLchan (*texels)[4] = (const GLchan (*)[4])
(swrast->TexelBuffer + unit *
(span->end * 4 * sizeof(GLchan)));
texture_apply( ctx, texUnit, span->end,
(CONST GLchan (*)[4]) primary_rgba, texels,
span->array->rgba );
}
}
}
}