blob: cd3d2174655c5e1c43bd1e59077e89bd60269456 [file] [log] [blame]
/*
Copyright 2005-2010 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
/*
The original source for this example is
Copyright (c) 1994-2008 John E. Stone
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
*/
/*
* grid.c - spatial subdivision efficiency structures
*
* $Id: grid.cpp,v 1.1.1.1 2012/03/29 17:22:19 uid42307 Exp $
*
*/
#include "machine.h"
#include "types.h"
#include "macros.h"
#include "vector.h"
#include "intersect.h"
#include "util.h"
#define GRID_PRIVATE
#include "grid.h"
#ifndef cbrt
#define cbrt(x) ((x) > 0.0 ? pow((double)(x), 1.0/3.0) : \
((x) < 0.0 ? -pow((double)-(x), 1.0/3.0) : 0.0))
#define qbrt(x) ((x) > 0.0 ? pow((double)(x), 1.0/4.0) : \
((x) < 0.0 ? -pow((double)-(x), 1.0/4.0) : 0.0))
#endif
static object_methods grid_methods = {
(void (*)(void *, void *))(grid_intersect),
(void (*)(void *, void *, void *, void *))(NULL),
grid_bbox,
grid_free
};
object * newgrid(int xsize, int ysize, int zsize, vector min, vector max) {
grid * g;
g = (grid *) rt_getmem(sizeof(grid));
memset(g, 0, sizeof(grid));
g->methods = &grid_methods;
g->id = new_objectid();
g->xsize = xsize;
g->ysize = ysize;
g->zsize = zsize;
g->min = min;
g->max = max;
VSub(&g->max, &g->min, &g->voxsize);
g->voxsize.x /= (flt) g->xsize;
g->voxsize.y /= (flt) g->ysize;
g->voxsize.z /= (flt) g->zsize;
g->cells = (objectlist **) rt_getmem(xsize*ysize*zsize*sizeof(objectlist *));
memset(g->cells, 0, xsize*ysize*zsize * sizeof(objectlist *));
/* fprintf(stderr, "New grid, size: %8d %8d %8d\n", g->xsize, g->ysize, g->zsize); */
return (object *) g;
}
static int grid_bbox(void * obj, vector * min, vector * max) {
grid * g = (grid *) obj;
*min = g->min;
*max = g->max;
return 1;
}
static void grid_free(void * v) {
int i, numvoxels;
grid * g = (grid *) v;
/* loop through all voxels and free the object lists */
numvoxels = g->xsize * g->ysize * g->zsize;
for (i=0; i<numvoxels; i++) {
objectlist * lcur, * lnext;
lcur = g->cells[i];
while (lcur != NULL) {
lnext = lcur->next;
free(lcur);
}
}
/* free the grid cells */
free(g->cells);
/* free all objects on the grid object list */
free_objects(g->objects);
free(g);
}
static void globalbound(object ** rootlist, vector * gmin, vector * gmax) {
vector min, max;
object * cur;
if (*rootlist == NULL) /* don't bound non-existant objects */
return;
gmin->x = FHUGE; gmin->y = FHUGE; gmin->z = FHUGE;
gmax->x = -FHUGE; gmax->y = -FHUGE; gmax->z = -FHUGE;
cur=*rootlist;
while (cur != NULL) { /* Go! */
min.x = -FHUGE; min.y = -FHUGE; min.z = -FHUGE;
max.x = FHUGE; max.y = FHUGE; max.z = FHUGE;
if (cur->methods->bbox((void *) cur, &min, &max)) {
gmin->x = MYMIN( gmin->x , min.x);
gmin->y = MYMIN( gmin->y , min.y);
gmin->z = MYMIN( gmin->z , min.z);
gmax->x = MYMAX( gmax->x , max.x);
gmax->y = MYMAX( gmax->y , max.y);
gmax->z = MYMAX( gmax->z , max.z);
}
cur=(object *)cur->nextobj;
}
}
static int cellbound(grid *g, gridindex *index, vector * cmin, vector * cmax) {
vector min, max, cellmin, cellmax;
objectlist * cur;
int numinbounds = 0;
cur = g->cells[index->z*g->xsize*g->ysize + index->y*g->xsize + index->x];
if (cur == NULL) /* don't bound non-existant objects */
return 0;
cellmin.x = voxel2x(g, index->x);
cellmin.y = voxel2y(g, index->y);
cellmin.z = voxel2z(g, index->z);
cellmax.x = cellmin.x + g->voxsize.x;
cellmax.y = cellmin.y + g->voxsize.y;
cellmax.z = cellmin.z + g->voxsize.z;
cmin->x = FHUGE; cmin->y = FHUGE; cmin->z = FHUGE;
cmax->x = -FHUGE; cmax->y = -FHUGE; cmax->z = -FHUGE;
while (cur != NULL) { /* Go! */
min.x = -FHUGE; min.y = -FHUGE; min.z = -FHUGE;
max.x = FHUGE; max.y = FHUGE; max.z = FHUGE;
if (cur->obj->methods->bbox((void *) cur->obj, &min, &max)) {
if ((min.x >= cellmin.x) && (max.x <= cellmax.x) &&
(min.y >= cellmin.y) && (max.y <= cellmax.y) &&
(min.z >= cellmin.z) && (max.z <= cellmax.z)) {
cmin->x = MYMIN( cmin->x , min.x);
cmin->y = MYMIN( cmin->y , min.y);
cmin->z = MYMIN( cmin->z , min.z);
cmax->x = MYMAX( cmax->x , max.x);
cmax->y = MYMAX( cmax->y , max.y);
cmax->z = MYMAX( cmax->z , max.z);
numinbounds++;
}
}
cur=cur->next;
}
/* in case we get a 0.0 sized axis on the cell bounds, we'll */
/* use the original cell bounds */
if ((cmax->x - cmin->x) < EPSILON) {
cmax->x += EPSILON;
cmin->x -= EPSILON;
}
if ((cmax->y - cmin->y) < EPSILON) {
cmax->y += EPSILON;
cmin->y -= EPSILON;
}
if ((cmax->z - cmin->z) < EPSILON) {
cmax->z += EPSILON;
cmin->z -= EPSILON;
}
return numinbounds;
}
static int countobj(object * root) {
object * cur; /* counts the number of objects on a list */
int numobj;
numobj=0;
cur=root;
while (cur != NULL) {
cur=(object *)cur->nextobj;
numobj++;
}
return numobj;
}
static int countobjlist(objectlist * root) {
objectlist * cur;
int numobj;
numobj=0;
cur = root;
while (cur != NULL) {
cur = cur->next;
numobj++;
}
return numobj;
}
int engrid_scene(object ** list) {
grid * g;
int numobj, numcbrt;
vector gmin, gmax;
gridindex index;
if (*list == NULL)
return 0;
numobj = countobj(*list);
fprintf(stderr, "Scene contains %d bounded objects.\n", numobj);
if (numobj > 16) {
numcbrt = (int) cbrt(4*numobj);
globalbound(list, &gmin, &gmax);
g = (grid *) newgrid(numcbrt, numcbrt, numcbrt, gmin, gmax);
engrid_objlist(g, list);
numobj = countobj(*list);
g->nextobj = *list;
*list = (object *) g;
/* now create subgrids.. */
for (index.z=0; index.z<g->zsize; index.z++) {
for (index.y=0; index.y<g->ysize; index.y++) {
for (index.x=0; index.x<g->xsize; index.x++) {
engrid_cell(g, &index);
}
}
}
}
return 1;
}
void engrid_objlist(grid * g, object ** list) {
object * cur, * next, **prev;
if (*list == NULL)
return;
prev = list;
cur = *list;
while (cur != NULL) {
next = (object *)cur->nextobj;
if (engrid_object(g, cur))
*prev = next;
else
prev = (object **) &cur->nextobj;
cur = next;
}
}
static int engrid_cell(grid * gold, gridindex *index) {
vector gmin, gmax, gsize;
flt len;
int numobj, numcbrt, xs, ys, zs;
grid * g;
objectlist **list;
objectlist * newobj;
list = &gold->cells[index->z*gold->xsize*gold->ysize +
index->y*gold->xsize + index->x];
if (*list == NULL)
return 0;
numobj = cellbound(gold, index, &gmin, &gmax);
VSub(&gmax, &gmin, &gsize);
len = 1.0 / (MYMAX( MYMAX(gsize.x, gsize.y), gsize.z ));
gsize.x *= len;
gsize.y *= len;
gsize.z *= len;
if (numobj > 16) {
numcbrt = (int) cbrt(2*numobj);
xs = (int) ((flt) numcbrt * gsize.x);
if (xs < 1) xs = 1;
ys = (int) ((flt) numcbrt * gsize.y);
if (ys < 1) ys = 1;
zs = (int) ((flt) numcbrt * gsize.z);
if (zs < 1) zs = 1;
g = (grid *) newgrid(xs, ys, zs, gmin, gmax);
engrid_objectlist(g, list);
newobj = (objectlist *) rt_getmem(sizeof(objectlist));
newobj->obj = (object *) g;
newobj->next = *list;
*list = newobj;
g->nextobj = gold->objects;
gold->objects = (object *) g;
}
return 1;
}
static int engrid_objectlist(grid * g, objectlist ** list) {
objectlist * cur, * next, **prev;
int numsucceeded = 0;
if (*list == NULL)
return 0;
prev = list;
cur = *list;
while (cur != NULL) {
next = cur->next;
if (engrid_object(g, cur->obj)) {
*prev = next;
free(cur);
numsucceeded++;
}
else {
prev = &cur->next;
}
cur = next;
}
return numsucceeded;
}
static int engrid_object(grid * g, object * obj) {
vector omin, omax;
gridindex low, high;
int x, y, z, zindex, yindex, voxindex;
objectlist * tmp;
if (obj->methods->bbox(obj, &omin, &omax)) {
if (!pos2grid(g, &omin, &low) || !pos2grid(g, &omax, &high)) {
return 0; /* object is not wholly contained in the grid */
}
}
else {
return 0; /* object is unbounded */
}
/* add the object to the complete list of objects in the grid */
obj->nextobj = g->objects;
g->objects = obj;
/* add this object to all voxels it inhabits */
for (z=low.z; z<=high.z; z++) {
zindex = z * g->xsize * g->ysize;
for (y=low.y; y<=high.y; y++) {
yindex = y * g->xsize;
for (x=low.x; x<=high.x; x++) {
voxindex = x + yindex + zindex;
tmp = (objectlist *) rt_getmem(sizeof(objectlist));
tmp->next = g->cells[voxindex];
tmp->obj = obj;
g->cells[voxindex] = tmp;
}
}
}
return 1;
}
static int pos2grid(grid * g, vector * pos, gridindex * index) {
index->x = (int) ((pos->x - g->min.x) / g->voxsize.x);
index->y = (int) ((pos->y - g->min.y) / g->voxsize.y);
index->z = (int) ((pos->z - g->min.z) / g->voxsize.z);
if (index->x == g->xsize)
index->x--;
if (index->y == g->ysize)
index->y--;
if (index->z == g->zsize)
index->z--;
if (index->x < 0 || index->x > g->xsize ||
index->y < 0 || index->y > g->ysize ||
index->z < 0 || index->z > g->zsize)
return 0;
if (pos->x < g->min.x || pos->x > g->max.x ||
pos->y < g->min.y || pos->y > g->max.y ||
pos->z < g->min.z || pos->z > g->max.z)
return 0;
return 1;
}
/* the real thing */
static void grid_intersect(grid * g, ray * ry) {
flt tnear, tfar, offset;
vector curpos, tmax, tdelta, pdeltaX, pdeltaY, pdeltaZ, nXp, nYp, nZp;
gridindex curvox, step, out;
int voxindex;
objectlist * cur;
if (ry->flags & RT_RAY_FINISHED)
return;
if (!grid_bounds_intersect(g, ry, &tnear, &tfar))
return;
if (ry->maxdist < tnear)
return;
curpos = Raypnt(ry, tnear);
pos2grid(g, &curpos, &curvox);
offset = tnear;
/* Setup X iterator stuff */
if (fabs(ry->d.x) < EPSILON) {
tmax.x = FHUGE;
tdelta.x = 0.0;
step.x = 0;
out.x = 0; /* never goes out of bounds on this axis */
}
else if (ry->d.x < 0.0) {
tmax.x = offset + ((voxel2x(g, curvox.x) - curpos.x) / ry->d.x);
tdelta.x = g->voxsize.x / - ry->d.x;
step.x = out.x = -1;
}
else {
tmax.x = offset + ((voxel2x(g, curvox.x + 1) - curpos.x) / ry->d.x);
tdelta.x = g->voxsize.x / ry->d.x;
step.x = 1;
out.x = g->xsize;
}
/* Setup Y iterator stuff */
if (fabs(ry->d.y) < EPSILON) {
tmax.y = FHUGE;
tdelta.y = 0.0;
step.y = 0;
out.y = 0; /* never goes out of bounds on this axis */
}
else if (ry->d.y < 0.0) {
tmax.y = offset + ((voxel2y(g, curvox.y) - curpos.y) / ry->d.y);
tdelta.y = g->voxsize.y / - ry->d.y;
step.y = out.y = -1;
}
else {
tmax.y = offset + ((voxel2y(g, curvox.y + 1) - curpos.y) / ry->d.y);
tdelta.y = g->voxsize.y / ry->d.y;
step.y = 1;
out.y = g->ysize;
}
/* Setup Z iterator stuff */
if (fabs(ry->d.z) < EPSILON) {
tmax.z = FHUGE;
tdelta.z = 0.0;
step.z = 0;
out.z = 0; /* never goes out of bounds on this axis */
}
else if (ry->d.z < 0.0) {
tmax.z = offset + ((voxel2z(g, curvox.z) - curpos.z) / ry->d.z);
tdelta.z = g->voxsize.z / - ry->d.z;
step.z = out.z = -1;
}
else {
tmax.z = offset + ((voxel2z(g, curvox.z + 1) - curpos.z) / ry->d.z);
tdelta.z = g->voxsize.z / ry->d.z;
step.z = 1;
out.z = g->zsize;
}
pdeltaX = ry->d;
VScale(&pdeltaX, tdelta.x);
pdeltaY = ry->d;
VScale(&pdeltaY, tdelta.y);
pdeltaZ = ry->d;
VScale(&pdeltaZ, tdelta.z);
nXp = Raypnt(ry, tmax.x);
nYp = Raypnt(ry, tmax.y);
nZp = Raypnt(ry, tmax.z);
voxindex = curvox.z*g->xsize*g->ysize + curvox.y*g->xsize + curvox.x;
while (1) {
if (tmax.x < tmax.y && tmax.x < tmax.z) {
cur = g->cells[voxindex];
while (cur != NULL) {
if (ry->mbox[cur->obj->id] != ry->serial) {
ry->mbox[cur->obj->id] = ry->serial;
cur->obj->methods->intersect(cur->obj, ry);
}
cur = cur->next;
}
curvox.x += step.x;
if (ry->maxdist < tmax.x || curvox.x == out.x)
break;
voxindex += step.x;
tmax.x += tdelta.x;
curpos = nXp;
nXp.x += pdeltaX.x;
nXp.y += pdeltaX.y;
nXp.z += pdeltaX.z;
}
else if (tmax.z < tmax.y) {
cur = g->cells[voxindex];
while (cur != NULL) {
if (ry->mbox[cur->obj->id] != ry->serial) {
ry->mbox[cur->obj->id] = ry->serial;
cur->obj->methods->intersect(cur->obj, ry);
}
cur = cur->next;
}
curvox.z += step.z;
if (ry->maxdist < tmax.z || curvox.z == out.z)
break;
voxindex += step.z*g->xsize*g->ysize;
tmax.z += tdelta.z;
curpos = nZp;
nZp.x += pdeltaZ.x;
nZp.y += pdeltaZ.y;
nZp.z += pdeltaZ.z;
}
else {
cur = g->cells[voxindex];
while (cur != NULL) {
if (ry->mbox[cur->obj->id] != ry->serial) {
ry->mbox[cur->obj->id] = ry->serial;
cur->obj->methods->intersect(cur->obj, ry);
}
cur = cur->next;
}
curvox.y += step.y;
if (ry->maxdist < tmax.y || curvox.y == out.y)
break;
voxindex += step.y*g->xsize;
tmax.y += tdelta.y;
curpos = nYp;
nYp.x += pdeltaY.x;
nYp.y += pdeltaY.y;
nYp.z += pdeltaY.z;
}
if (ry->flags & RT_RAY_FINISHED)
break;
}
}
static void voxel_intersect(grid * g, ray * ry, int voxindex) {
objectlist * cur;
cur = g->cells[voxindex];
while (cur != NULL) {
cur->obj->methods->intersect(cur->obj, ry);
cur = cur->next;
}
}
static int grid_bounds_intersect(grid * g, ray * ry, flt *near, flt *far) {
flt a, tx1, tx2, ty1, ty2, tz1, tz2;
flt tnear, tfar;
tnear= -FHUGE;
tfar= FHUGE;
if (ry->d.x == 0.0) {
if ((ry->o.x < g->min.x) || (ry->o.x > g->max.x)) return 0;
}
else {
tx1 = (g->min.x - ry->o.x) / ry->d.x;
tx2 = (g->max.x - ry->o.x) / ry->d.x;
if (tx1 > tx2) { a=tx1; tx1=tx2; tx2=a; }
if (tx1 > tnear) tnear=tx1;
if (tx2 < tfar) tfar=tx2;
}
if (tnear > tfar) return 0;
if (tfar < 0.0) return 0;
if (ry->d.y == 0.0) {
if ((ry->o.y < g->min.y) || (ry->o.y > g->max.y)) return 0;
}
else {
ty1 = (g->min.y - ry->o.y) / ry->d.y;
ty2 = (g->max.y - ry->o.y) / ry->d.y;
if (ty1 > ty2) { a=ty1; ty1=ty2; ty2=a; }
if (ty1 > tnear) tnear=ty1;
if (ty2 < tfar) tfar=ty2;
}
if (tnear > tfar) return 0;
if (tfar < 0.0) return 0;
if (ry->d.z == 0.0) {
if ((ry->o.z < g->min.z) || (ry->o.z > g->max.z)) return 0;
}
else {
tz1 = (g->min.z - ry->o.z) / ry->d.z;
tz2 = (g->max.z - ry->o.z) / ry->d.z;
if (tz1 > tz2) { a=tz1; tz1=tz2; tz2=a; }
if (tz1 > tnear) tnear=tz1;
if (tz2 < tfar) tfar=tz2;
}
if (tnear > tfar) return 0;
if (tfar < 0.0) return 0;
*near = tnear;
*far = tfar;
return 1;
}