blob: e391b1958a39a15684cde54199253bb218205c2d [file] [log] [blame]
/*
Copyright 2005-2010 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
/*
This file contains a few implementations, so it may look overly complicated.
The most efficient implementation is also separated into convex_hull_sample.cpp
*/
#include "convex_hull.h"
typedef util::point<double> point_t;
#define USETBB 1
#define USECONCVEC 1
#define INIT_ONCE 1
#if !USETBB // Serial implementation of Quick Hull algorithm
typedef std::vector< point_t > pointVec_t;
// C++ style serial code
class FillRNDPointsVector : public std::unary_function<point_t&, void> {
unsigned int rseed;
size_t count;
public:
FillRNDPointsVector() : rseed(1), count(0) {}
void operator()(point_t& p) {
p = util::GenerateRNDPoint<double>(count, rseed);
}
};
void initialize(pointVec_t &points) {
points.clear();
points.resize(cfg::MAXPOINTS);
std::for_each(points.begin(), points.end(), FillRNDPointsVector());
}
class FindXExtremum : public std::unary_function<const point_t&, void> {
public:
typedef enum {
minX, maxX
} extremumType;
FindXExtremum(const point_t& frstPoint, extremumType exType_)
: extrXPoint(frstPoint), exType(exType_) {}
void operator()(const point_t& p) {
if(closerToExtremum(p))
extrXPoint = p;
}
operator point_t () {
return extrXPoint;
}
private:
const extremumType exType;
point_t extrXPoint;
bool closerToExtremum(const point_t &p) const {
switch(exType) {
case minX:
return p.x<extrXPoint.x; break;
case maxX:
return p.x>extrXPoint.x; break;
}
}
};
template <FindXExtremum::extremumType type>
point_t extremum(const pointVec_t &points) {
assert(!points.empty());
return std::for_each(points.begin(), points.end(), FindXExtremum(points[0], type));
}
class SplitByCP : public std::unary_function<const point_t&, void> {
pointVec_t &reducedSet;
point_t p1, p2;
point_t farPoint;
double howFar;
public:
SplitByCP( point_t _p1, point_t _p2, pointVec_t &_reducedSet)
: p1(_p1), p2(_p2), reducedSet(_reducedSet), howFar(0), farPoint(p1) {}
void operator()(const point_t& p) {
double cp;
if( (p != p1) && (p != p2) ) {
cp = util::cross_product(p1, p2, p);
if(cp>0) {
reducedSet.push_back(p);
if(cp>howFar) {
farPoint = p;
howFar = cp;
}
}
}
}
operator point_t (){
return farPoint;
}
};
point_t divide(const pointVec_t &P, pointVec_t &P_reduced, const point_t &p1, const point_t &p2) {
SplitByCP splitByCP(p1, p2, P_reduced);
point_t farPoint = std::for_each(P.begin(), P.end(), splitByCP);
if(util::VERBOSE) {
std::stringstream ss;
ss << P.size() << " nodes in bucket"<< ", "
<< "dividing by: [ " << p1 << ", " << p2 << " ], "
<< "farthest node: " << farPoint;
util::OUTPUT.push_back(ss.str());
}
return farPoint;
}
void divide_and_conquer(const pointVec_t &P, pointVec_t &H, point_t p1, point_t p2) {
if (P.size()<2) {
H.push_back(p1);
H.insert(H.end(), P.begin(), P.end());
}
else {
pointVec_t P_reduced;
pointVec_t H1, H2;
point_t p_far;
p_far = divide(P, P_reduced, p1, p2);
divide_and_conquer(P_reduced, H1, p1, p_far);
divide_and_conquer(P_reduced, H2, p_far, p2);
H.insert(H.end(), H1.begin(), H1.end());
H.insert(H.end(), H2.begin(), H2.end());
}
}
void quickhull(const pointVec_t &points, pointVec_t &hull) {
hull.clear();
point_t p_maxx = extremum<FindXExtremum::maxX>(points);
point_t p_minx = extremum<FindXExtremum::minX>(points);
pointVec_t H;
divide_and_conquer(points, hull, p_maxx, p_minx);
divide_and_conquer(points, H, p_minx, p_maxx);
hull.insert(hull.end(), H.begin(), H.end());
}
int main(int argc, char* argv[]) {
util::ParseInputArgs(argc, argv);
pointVec_t points;
pointVec_t hull;
util::my_time_t tm_init, tm_start, tm_end;
std::cout << "Starting serial version of QUICK HULL algorithm" << std::endl;
tm_init = util::gettime();
initialize(points);
tm_start = util::gettime();
quickhull(points, hull);
tm_end = util::gettime();
util::WriteResults(1, util::time_diff(tm_init, tm_start),
util::time_diff(tm_start, tm_end));
}
#else // USETBB - parallel version of Quick Hull algorithm
#include "tbb/task_scheduler_init.h"
#include "tbb/parallel_for.h"
#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"
typedef tbb::blocked_range<size_t> range_t;
#if USECONCVEC
#include "tbb/concurrent_vector.h"
typedef tbb::concurrent_vector<point_t> pointVec_t;
void appendVector(const point_t* src, size_t srcSize, pointVec_t& dest) {
std::copy(src, src + srcSize, dest.grow_by(srcSize));
}
void appendVector(const pointVec_t& src, pointVec_t& dest) {
std::copy(src.begin(), src.end(), dest.grow_by(src.size()));
}
#else // USE STD::VECTOR - include spin_mutex.h and lock vector operations
#include "tbb/spin_mutex.h"
typedef tbb::spin_mutex mutex_t;
typedef std::vector<point_t> pointVec_t;
void appendVector(mutex_t& insertMutex, const pointVec_t& src, pointVec_t& dest) {
mutex_t::scoped_lock lock(insertMutex);
dest.insert(dest.end(), src.begin(), src.end());
}
void appendVector(mutex_t& insertMutex, const point_t* src, size_t srcSize,
pointVec_t& dest) {
mutex_t::scoped_lock lock(insertMutex);
dest.insert(dest.end(), src, src + srcSize);
}
#endif // USECONCVEC
class FillRNDPointsVector {
pointVec_t &points;
mutable unsigned int rseed;
public:
static const size_t grainSize = cfg::GENERATE_GS;
#if !USECONCVEC
static mutex_t pushBackMutex;
#endif // USECONCVEC
FillRNDPointsVector(pointVec_t& _points)
: points(_points), rseed(1) {}
FillRNDPointsVector(const FillRNDPointsVector& other)
: points(other.points), rseed(other.rseed+1) {}
void operator()(const range_t& range) const {
const size_t i_end = range.end();
size_t count = 0;
for(size_t i = range.begin(); i != i_end; ++i) {
#if USECONCVEC
points.push_back(util::GenerateRNDPoint<double>(count, rseed));
#else // Locked push_back to a not thread-safe STD::VECTOR
{
mutex_t::scoped_lock lock(pushBackMutex);
points.push_back(util::GenerateRNDPoint<double>(count, rseed));
}
#endif // USECONCVEC
}
}
};
class FillRNDPointsVector_buf {
pointVec_t &points;
mutable unsigned int rseed;
public:
static const size_t grainSize = cfg::GENERATE_GS;
#if !USECONCVEC
static mutex_t insertMutex;
#endif // USECONCVEC
FillRNDPointsVector_buf(pointVec_t& _points)
: points(_points), rseed(1) {}
FillRNDPointsVector_buf(const FillRNDPointsVector_buf& other)
: points(other.points), rseed(other.rseed+1) {}
void operator()(const range_t& range) const {
const size_t i_end = range.end();
size_t count = 0, j = 0;
point_t tmp_vec[grainSize];
for(size_t i=range.begin(); i!=i_end; ++i) {
tmp_vec[j++] = util::GenerateRNDPoint<double>(count, rseed);
}
#if USECONCVEC
appendVector(tmp_vec, j, points);
#else // USE STD::VECTOR
appendVector(insertMutex, tmp_vec, j, points);
#endif // USECONCVEC
}
};
#if !USECONCVEC
mutex_t FillRNDPointsVector::pushBackMutex = mutex_t();
mutex_t FillRNDPointsVector_buf::insertMutex = mutex_t();
#endif
template<typename BodyType>
void initialize(pointVec_t &points) {
points.clear();
// In the buffered version, a temporary storage for as much as grainSize elements
// is allocated inside the body. Since auto_partitioner may increase effective
// range size which would cause a crash, simple partitioner has to be used.
tbb::parallel_for(range_t(0, cfg::MAXPOINTS, BodyType::grainSize),
BodyType(points), tbb::simple_partitioner());
}
class FindXExtremum {
public:
typedef enum {
minX, maxX
} extremumType;
static const size_t grainSize = cfg::FINDEXT_GS;
FindXExtremum(const pointVec_t& points_, extremumType exType_)
: points(points_), exType(exType_), extrXPoint(points[0]) {}
FindXExtremum(const FindXExtremum& fxex, tbb::split)
: points(fxex.points), exType(fxex.exType), extrXPoint(fxex.extrXPoint) {}
void operator()(const range_t& range) {
const size_t i_end = range.end();
if(!range.empty()) {
for(size_t i = range.begin(); i != i_end; ++i) {
if(closerToExtremum(points[i])) {
extrXPoint = points[i];
}
}
}
}
void join(const FindXExtremum &rhs) {
if(closerToExtremum(rhs.extrXPoint)) {
extrXPoint = rhs.extrXPoint;
}
}
point_t extremeXPoint() {
return extrXPoint;
}
private:
const pointVec_t &points;
const extremumType exType;
point_t extrXPoint;
bool closerToExtremum(const point_t &p) const {
switch(exType) {
case minX:
return p.x<extrXPoint.x; break;
case maxX:
return p.x>extrXPoint.x; break;
}
return false; // avoid warning
}
};
template <FindXExtremum::extremumType type>
point_t extremum(const pointVec_t &P) {
FindXExtremum fxBody(P, type);
tbb::parallel_reduce(range_t(0, P.size(), FindXExtremum::grainSize), fxBody);
return fxBody.extremeXPoint();
}
class SplitByCP {
const pointVec_t &initialSet;
pointVec_t &reducedSet;
point_t p1, p2;
point_t farPoint;
double howFar;
public:
static const size_t grainSize = cfg::DIVIDE_GS;
#if !USECONCVEC
static mutex_t pushBackMutex;
#endif // USECONCVEC
SplitByCP( point_t _p1, point_t _p2,
const pointVec_t &_initialSet, pointVec_t &_reducedSet)
: p1(_p1), p2(_p2),
initialSet(_initialSet), reducedSet(_reducedSet),
howFar(0), farPoint(p1) {
}
SplitByCP( SplitByCP& sbcp, tbb::split )
: p1(sbcp.p1), p2(sbcp.p2),
initialSet(sbcp.initialSet), reducedSet(sbcp.reducedSet),
howFar(0), farPoint(p1) {}
void operator()( const range_t& range ) {
const size_t i_end = range.end();
double cp;
for(size_t i=range.begin(); i!=i_end; ++i) {
if( (initialSet[i] != p1) && (initialSet[i] != p2) ) {
cp = util::cross_product(p1, p2, initialSet[i]);
if(cp>0) {
#if USECONCVEC
reducedSet.push_back(initialSet[i]);
#else // Locked push_back to a not thread-safe STD::VECTOR
{
mutex_t::scoped_lock lock(pushBackMutex);
reducedSet.push_back(initialSet[i]);
}
#endif // USECONCVEC
if(cp>howFar) {
farPoint = initialSet[i];
howFar = cp;
}
}
}
}
}
void join(const SplitByCP& rhs) {
if(rhs.howFar>howFar) {
howFar = rhs.howFar;
farPoint = rhs.farPoint;
}
}
point_t farthestPoint() const {
return farPoint;
}
};
class SplitByCP_buf {
const pointVec_t &initialSet;
pointVec_t &reducedSet;
point_t p1, p2;
point_t farPoint;
double howFar;
public:
static const size_t grainSize = cfg::DIVIDE_GS;
#if !USECONCVEC
static mutex_t insertMutex;
#endif // USECONCVEC
SplitByCP_buf( point_t _p1, point_t _p2,
const pointVec_t &_initialSet, pointVec_t &_reducedSet)
: p1(_p1), p2(_p2),
initialSet(_initialSet), reducedSet(_reducedSet),
howFar(0), farPoint(p1) {}
SplitByCP_buf(SplitByCP_buf& sbcp, tbb::split)
: p1(sbcp.p1), p2(sbcp.p2),
initialSet(sbcp.initialSet), reducedSet(sbcp.reducedSet),
howFar(0), farPoint(p1) {}
void operator()(const range_t& range) {
const size_t i_end = range.end();
size_t j = 0;
double cp;
point_t tmp_vec[grainSize];
for(size_t i = range.begin(); i != i_end; ++i) {
if( (initialSet[i] != p1) && (initialSet[i] != p2) ) {
cp = util::cross_product(p1, p2, initialSet[i]);
if(cp>0) {
tmp_vec[j++] = initialSet[i];
if(cp>howFar) {
farPoint = initialSet[i];
howFar = cp;
}
}
}
}
#if USECONCVEC
appendVector(tmp_vec, j, reducedSet);
#else // USE STD::VECTOR
appendVector(insertMutex, tmp_vec, j, reducedSet);
#endif // USECONCVEC
}
void join(const SplitByCP_buf& rhs) {
if(rhs.howFar>howFar) {
howFar = rhs.howFar;
farPoint = rhs.farPoint;
}
}
point_t farthestPoint() const {
return farPoint;
}
};
#if !USECONCVEC
mutex_t SplitByCP::pushBackMutex = mutex_t();
mutex_t SplitByCP_buf::insertMutex = mutex_t();
#endif
template <typename BodyType>
point_t divide(const pointVec_t &P, pointVec_t &P_reduced,
const point_t &p1, const point_t &p2) {
BodyType body(p1, p2, P, P_reduced);
// Must use simple_partitioner (see the comment in initialize() above)
tbb::parallel_reduce(range_t(0, P.size(), BodyType::grainSize),
body, tbb::simple_partitioner() );
if(util::VERBOSE) {
std::stringstream ss;
ss << P.size() << " nodes in bucket"<< ", "
<< "dividing by: [ " << p1 << ", " << p2 << " ], "
<< "farthest node: " << body.farthestPoint();
util::OUTPUT.push_back(ss.str());
}
return body.farthestPoint();
}
void divide_and_conquer(const pointVec_t &P, pointVec_t &H,
point_t p1, point_t p2, bool buffered) {
if (P.size()<2) {
H.push_back(p1);
#if USECONCVEC
appendVector(P, H);
#else // insert into STD::VECTOR
H.insert(H.end(), P.begin(), P.end());
#endif
}
else {
pointVec_t P_reduced;
pointVec_t H1, H2;
point_t p_far;
if(buffered) {
p_far = divide<SplitByCP_buf>(P, P_reduced, p1, p2);
} else {
p_far = divide<SplitByCP>(P, P_reduced, p1, p2);
}
divide_and_conquer(P_reduced, H1, p1, p_far, buffered);
divide_and_conquer(P_reduced, H2, p_far, p2, buffered);
#if USECONCVEC
appendVector(H1, H);
appendVector(H2, H);
#else // insert into STD::VECTOR
H.insert(H.end(), H1.begin(), H1.end());
H.insert(H.end(), H2.begin(), H2.end());
#endif
}
}
void quickhull(const pointVec_t &points, pointVec_t &hull, bool buffered) {
hull.clear();
point_t p_maxx = extremum<FindXExtremum::maxX>(points);
point_t p_minx = extremum<FindXExtremum::minX>(points);
pointVec_t H;
divide_and_conquer(points, hull, p_maxx, p_minx, buffered);
divide_and_conquer(points, H, p_minx, p_maxx, buffered);
#if USECONCVEC
appendVector(H, hull);
#else // STD::VECTOR
hull.insert(hull.end(), H.begin(), H.end());
#endif // USECONCVEC
}
int main(int argc, char* argv[]) {
util::ParseInputArgs(argc, argv);
pointVec_t points;
pointVec_t hull;
int nthreads;
util::my_time_t tm_init, tm_start, tm_end;
pointVec_t tmp_points;
#if USECONCVEC
std::cout << "Starting TBB unbufferred push_back version of QUICK HULL algorithm" << std::endl;
#else
std::cout << "Starting STL locked unbufferred push_back version of QUICK HULL algorithm" << std::endl;
#endif // USECONCVEC
for(nthreads=cfg::NUM_THREADS_START; nthreads<=cfg::NUM_THREADS_END;
++nthreads) {
tbb::task_scheduler_init init(nthreads);
#if INIT_ONCE
if(nthreads==cfg::NUM_THREADS_START) {
tm_init = util::gettime();
initialize<FillRNDPointsVector>(points);
}
else /* timing generation for stats, but use original data set */ {
tm_init = util::gettime();
initialize<FillRNDPointsVector>(tmp_points);
}
#else
tm_init = util::gettime();
initialize<FillRNDPointsVector>(points);
#endif // INIT_ONCE
tm_start = util::gettime();
quickhull(points, hull, false);
tm_end = util::gettime();
util::WriteResults(nthreads, util::time_diff(tm_init, tm_start),
util::time_diff(tm_start, tm_end));
}
#if USECONCVEC
std::cout << "Starting TBB bufferred version of QUICK HULL algorithm" << std::endl;
#else
std::cout << "Starting STL locked bufferred version of QUICK HULL algorithm" << std::endl;
#endif
for(nthreads=cfg::NUM_THREADS_START; nthreads<=cfg::NUM_THREADS_END;
++nthreads) {
tbb::task_scheduler_init init(nthreads);
#if INIT_ONCE
if(nthreads==cfg::NUM_THREADS_START) {
tm_init = util::gettime();
initialize<FillRNDPointsVector_buf>(points);
}
else /* timing generation for stats, but use original data set */ {
tm_init = util::gettime();
initialize<FillRNDPointsVector_buf>(tmp_points);
}
#else
tm_init = util::gettime();
initialize<FillRNDPointsVector_buf>(points);
#endif // INIT_ONCE
tm_start = util::gettime();
quickhull(points, hull, true);
tm_end = util::gettime();
util::WriteResults(nthreads, util::time_diff(tm_init, tm_start),
util::time_diff(tm_start, tm_end));
}
return 0;
}
#endif // USETBB