blob: 60896607f2a5fbcac1076a012b7bb4173377ceca [file] [log] [blame]
/*
Copyright 2005-2010 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
#include "tbb/tbb_stddef.h"
#include "tbb/tbb_machine.h"
#include "tbb/tbb_exception.h"
#include "tbb/_concurrent_queue_internal.h"
#include "concurrent_monitor.h"
#include "itt_notify.h"
#include <new>
#if !TBB_USE_EXCEPTIONS && _MSC_VER
// Suppress "C++ exception handler used, but unwind semantics are not enabled" warning in STL headers
#pragma warning (push)
#pragma warning (disable: 4530)
#endif
#include <cstring> // for memset()
#if !TBB_USE_EXCEPTIONS && _MSC_VER
#pragma warning (pop)
#endif
using namespace std;
#if defined(_MSC_VER) && defined(_Wp64)
// Workaround for overzealous compiler warnings in /Wp64 mode
#pragma warning (disable: 4267)
#endif
#define RECORD_EVENTS 0
namespace tbb {
namespace internal {
typedef concurrent_queue_base_v3 concurrent_queue_base;
typedef size_t ticket;
//! A queue using simple locking.
/** For efficient, this class has no constructor.
The caller is expected to zero-initialize it. */
struct micro_queue {
typedef concurrent_queue_base::page page;
friend class micro_queue_pop_finalizer;
atomic<page*> head_page;
atomic<ticket> head_counter;
atomic<page*> tail_page;
atomic<ticket> tail_counter;
spin_mutex page_mutex;
void push( const void* item, ticket k, concurrent_queue_base& base );
bool pop( void* dst, ticket k, concurrent_queue_base& base );
micro_queue& assign( const micro_queue& src, concurrent_queue_base& base );
page* make_copy ( concurrent_queue_base& base, const page* src_page, size_t begin_in_page, size_t end_in_page, ticket& g_index ) ;
void make_invalid( ticket k );
};
// we need to yank it out of micro_queue because of concurrent_queue_base::deallocate_page being virtual.
class micro_queue_pop_finalizer: no_copy {
typedef concurrent_queue_base::page page;
ticket my_ticket;
micro_queue& my_queue;
page* my_page;
concurrent_queue_base &base;
public:
micro_queue_pop_finalizer( micro_queue& queue, concurrent_queue_base& b, ticket k, page* p ) :
my_ticket(k), my_queue(queue), my_page(p), base(b)
{}
~micro_queue_pop_finalizer() {
page* p = my_page;
if( p ) {
spin_mutex::scoped_lock lock( my_queue.page_mutex );
page* q = p->next;
my_queue.head_page = q;
if( !q ) {
my_queue.tail_page = NULL;
}
}
my_queue.head_counter = my_ticket;
if( p )
base.deallocate_page( p );
}
};
struct predicate_leq {
ticket t;
predicate_leq( ticket t_ ) : t(t_) {}
bool operator() ( void* p ) const {return (ticket)p<=t;}
};
//! Internal representation of a ConcurrentQueue.
/** For efficient, this class has no constructor.
The caller is expected to zero-initialize it. */
class concurrent_queue_rep {
public:
private:
friend struct micro_queue;
//! Approximately n_queue/golden ratio
static const size_t phi = 3;
public:
//! Must be power of 2
static const size_t n_queue = 8;
//! Map ticket to an array index
static size_t index( ticket k ) {
return k*phi%n_queue;
}
atomic<ticket> head_counter;
concurrent_monitor items_avail;
atomic<size_t> n_invalid_entries;
char pad1[NFS_MaxLineSize-((sizeof(atomic<ticket>)+sizeof(concurrent_monitor)+sizeof(atomic<size_t>))&(NFS_MaxLineSize-1))];
atomic<ticket> tail_counter;
concurrent_monitor slots_avail;
char pad2[NFS_MaxLineSize-((sizeof(atomic<ticket>)+sizeof(concurrent_monitor))&(NFS_MaxLineSize-1))];
micro_queue array[n_queue];
micro_queue& choose( ticket k ) {
// The formula here approximates LRU in a cache-oblivious way.
return array[index(k)];
}
//! Value for effective_capacity that denotes unbounded queue.
static const ptrdiff_t infinite_capacity = ptrdiff_t(~size_t(0)/2);
};
#if _MSC_VER && !defined(__INTEL_COMPILER)
// unary minus operator applied to unsigned type, result still unsigned
#pragma warning( push )
#pragma warning( disable: 4146 )
#endif
static void* invalid_page;
//------------------------------------------------------------------------
// micro_queue
//------------------------------------------------------------------------
void micro_queue::push( const void* item, ticket k, concurrent_queue_base& base ) {
k &= -concurrent_queue_rep::n_queue;
page* p = NULL;
size_t index = k/concurrent_queue_rep::n_queue & (base.items_per_page-1);
if( !index ) {
__TBB_TRY {
p = base.allocate_page();
} __TBB_CATCH(...) {
++base.my_rep->n_invalid_entries;
make_invalid( k );
}
p->mask = 0;
p->next = NULL;
}
if( tail_counter!=k ) {
atomic_backoff backoff;
do {
backoff.pause();
// no memory. throws an exception; assumes concurrent_queue_rep::n_queue>1
if( tail_counter&0x1 ) {
++base.my_rep->n_invalid_entries;
throw_exception( eid_bad_last_alloc );
}
} while( tail_counter!=k ) ;
}
if( p ) {
spin_mutex::scoped_lock lock( page_mutex );
if( page* q = tail_page )
q->next = p;
else
head_page = p;
tail_page = p;
} else {
p = tail_page;
}
ITT_NOTIFY( sync_acquired, p );
__TBB_TRY {
base.copy_item( *p, index, item );
ITT_NOTIFY( sync_releasing, p );
// If no exception was thrown, mark item as present.
p->mask |= uintptr_t(1)<<index;
tail_counter += concurrent_queue_rep::n_queue;
} __TBB_CATCH(...) {
++base.my_rep->n_invalid_entries;
tail_counter += concurrent_queue_rep::n_queue;
__TBB_RETHROW();
}
}
bool micro_queue::pop( void* dst, ticket k, concurrent_queue_base& base ) {
k &= -concurrent_queue_rep::n_queue;
spin_wait_until_eq( head_counter, k );
spin_wait_while_eq( tail_counter, k );
page& p = *head_page;
__TBB_ASSERT( &p, NULL );
size_t index = k/concurrent_queue_rep::n_queue & (base.items_per_page-1);
bool success = false;
{
micro_queue_pop_finalizer finalizer( *this, base, k+concurrent_queue_rep::n_queue, index==base.items_per_page-1 ? &p : NULL );
if( p.mask & uintptr_t(1)<<index ) {
success = true;
ITT_NOTIFY( sync_acquired, dst );
ITT_NOTIFY( sync_acquired, head_page );
base.assign_and_destroy_item( dst, p, index );
ITT_NOTIFY( sync_releasing, head_page );
} else {
--base.my_rep->n_invalid_entries;
}
}
return success;
}
micro_queue& micro_queue::assign( const micro_queue& src, concurrent_queue_base& base )
{
head_counter = src.head_counter;
tail_counter = src.tail_counter;
page_mutex = src.page_mutex;
const page* srcp = src.head_page;
if( srcp ) {
ticket g_index = head_counter;
__TBB_TRY {
size_t n_items = (tail_counter-head_counter)/concurrent_queue_rep::n_queue;
size_t index = head_counter/concurrent_queue_rep::n_queue & (base.items_per_page-1);
size_t end_in_first_page = (index+n_items<base.items_per_page)?(index+n_items):base.items_per_page;
head_page = make_copy( base, srcp, index, end_in_first_page, g_index );
page* cur_page = head_page;
if( srcp != src.tail_page ) {
for( srcp = srcp->next; srcp!=src.tail_page; srcp=srcp->next ) {
cur_page->next = make_copy( base, srcp, 0, base.items_per_page, g_index );
cur_page = cur_page->next;
}
__TBB_ASSERT( srcp==src.tail_page, NULL );
size_t last_index = tail_counter/concurrent_queue_rep::n_queue & (base.items_per_page-1);
if( last_index==0 ) last_index = base.items_per_page;
cur_page->next = make_copy( base, srcp, 0, last_index, g_index );
cur_page = cur_page->next;
}
tail_page = cur_page;
} __TBB_CATCH(...) {
make_invalid( g_index );
}
} else {
head_page = tail_page = NULL;
}
return *this;
}
concurrent_queue_base::page* micro_queue::make_copy( concurrent_queue_base& base, const concurrent_queue_base::page* src_page, size_t begin_in_page, size_t end_in_page, ticket& g_index )
{
page* new_page = base.allocate_page();
new_page->next = NULL;
new_page->mask = src_page->mask;
for( ; begin_in_page!=end_in_page; ++begin_in_page, ++g_index )
if( new_page->mask & uintptr_t(1)<<begin_in_page )
base.copy_page_item( *new_page, begin_in_page, *src_page, begin_in_page );
return new_page;
}
void micro_queue::make_invalid( ticket k )
{
static concurrent_queue_base::page dummy = {static_cast<page*>((void*)1), 0};
// mark it so that no more pushes are allowed.
invalid_page = &dummy;
{
spin_mutex::scoped_lock lock( page_mutex );
tail_counter = k+concurrent_queue_rep::n_queue+1;
if( page* q = tail_page )
q->next = static_cast<page*>(invalid_page);
else
head_page = static_cast<page*>(invalid_page);
tail_page = static_cast<page*>(invalid_page);
}
__TBB_RETHROW();
}
#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif // warning 4146 is back
//------------------------------------------------------------------------
// concurrent_queue_base
//------------------------------------------------------------------------
concurrent_queue_base_v3::concurrent_queue_base_v3( size_t item_size ) {
items_per_page = item_size<=8 ? 32 :
item_size<=16 ? 16 :
item_size<=32 ? 8 :
item_size<=64 ? 4 :
item_size<=128 ? 2 :
1;
my_capacity = size_t(-1)/(item_size>1 ? item_size : 2);
my_rep = cache_aligned_allocator<concurrent_queue_rep>().allocate(1);
__TBB_ASSERT( (size_t)my_rep % NFS_GetLineSize()==0, "alignment error" );
__TBB_ASSERT( (size_t)&my_rep->head_counter % NFS_GetLineSize()==0, "alignment error" );
__TBB_ASSERT( (size_t)&my_rep->tail_counter % NFS_GetLineSize()==0, "alignment error" );
__TBB_ASSERT( (size_t)&my_rep->array % NFS_GetLineSize()==0, "alignment error" );
memset(my_rep,0,sizeof(concurrent_queue_rep));
new ( &my_rep->items_avail ) concurrent_monitor();
new ( &my_rep->slots_avail ) concurrent_monitor();
this->item_size = item_size;
}
concurrent_queue_base_v3::~concurrent_queue_base_v3() {
size_t nq = my_rep->n_queue;
for( size_t i=0; i<nq; i++ )
__TBB_ASSERT( my_rep->array[i].tail_page==NULL, "pages were not freed properly" );
cache_aligned_allocator<concurrent_queue_rep>().deallocate(my_rep,1);
}
void concurrent_queue_base_v3::internal_push( const void* src ) {
concurrent_queue_rep& r = *my_rep;
ticket k = r.tail_counter++;
ptrdiff_t e = my_capacity;
atomic_backoff backoff;
concurrent_monitor::thread_context thr_ctx;
#if DO_ITT_NOTIFY
bool sync_prepare_done = false;
#endif
while( (ptrdiff_t)(k-r.head_counter)>=e ) {
#if DO_ITT_NOTIFY
if( !sync_prepare_done ) {
ITT_NOTIFY( sync_prepare, &sync_prepare_done );
sync_prepare_done = true;
}
#endif
if( !backoff.bounded_pause() ) {
bool slept = false;
r.slots_avail.prepare_wait( thr_ctx, (void*) ((ptrdiff_t)(k-e)) );
while( (ptrdiff_t)(k-r.head_counter)>=const_cast<volatile ptrdiff_t&>(e = my_capacity) ) {
if( (slept = r.slots_avail.commit_wait( thr_ctx ) )==true )
break;
r.slots_avail.prepare_wait( thr_ctx, (void*) ((ptrdiff_t)(k-e)) );
}
if( !slept )
r.slots_avail.cancel_wait( thr_ctx );
break;
}
e = const_cast<volatile ptrdiff_t&>(my_capacity);
}
ITT_NOTIFY( sync_acquired, &sync_prepare_done );
r.choose( k ).push( src, k, *this );
r.items_avail.notify( predicate_leq(k) );
}
void concurrent_queue_base_v3::internal_pop( void* dst ) {
concurrent_queue_rep& r = *my_rep;
ticket k;
atomic_backoff backoff;
concurrent_monitor::thread_context thr_ctx;
#if DO_ITT_NOTIFY
bool sync_prepare_done = false;
#endif
do {
k=r.head_counter++;
while( r.tail_counter<=k ) {
#if DO_ITT_NOTIFY
if( !sync_prepare_done ) {
ITT_NOTIFY( sync_prepare, dst );
sync_prepare_done = true;
}
#endif
// Queue is empty; pause and re-try a few times
if( !backoff.bounded_pause() ) {
bool slept = false;
r.items_avail.prepare_wait( thr_ctx, (void*)k );
while( r.tail_counter<=k ) {
if( (slept = r.items_avail.commit_wait( thr_ctx ) )==true )
break;
r.items_avail.prepare_wait( thr_ctx, (void*)k );
}
if( !slept )
r.items_avail.cancel_wait( thr_ctx );
break; // break from inner while
}
} // break to here
} while( !r.choose(k).pop(dst,k,*this) );
// wake up a producer..
r.slots_avail.notify( predicate_leq(k) );
}
bool concurrent_queue_base_v3::internal_pop_if_present( void* dst ) {
concurrent_queue_rep& r = *my_rep;
ticket k;
do {
k = r.head_counter;
for(;;) {
if( r.tail_counter<=k ) {
// Queue is empty
return false;
}
// Queue had item with ticket k when we looked. Attempt to get that item.
ticket tk=k;
k = r.head_counter.compare_and_swap( tk+1, tk );
if( k==tk )
break;
// Another thread snatched the item, retry.
}
} while( !r.choose( k ).pop( dst, k, *this ) );
r.slots_avail.notify( predicate_leq(k) );
return true;
}
bool concurrent_queue_base_v3::internal_push_if_not_full( const void* src ) {
concurrent_queue_rep& r = *my_rep;
ticket k = r.tail_counter;
for(;;) {
if( (ptrdiff_t)(k-r.head_counter)>=my_capacity ) {
// Queue is full
return false;
}
// Queue had empty slot with ticket k when we looked. Attempt to claim that slot.
ticket tk=k;
k = r.tail_counter.compare_and_swap( tk+1, tk );
if( k==tk )
break;
// Another thread claimed the slot, so retry.
}
r.choose(k).push(src,k,*this);
r.items_avail.notify( predicate_leq(k) );
return true;
}
ptrdiff_t concurrent_queue_base_v3::internal_size() const {
__TBB_ASSERT( sizeof(ptrdiff_t)<=sizeof(size_t), NULL );
return ptrdiff_t(my_rep->tail_counter-my_rep->head_counter-my_rep->n_invalid_entries);
}
bool concurrent_queue_base_v3::internal_empty() const {
ticket tc = my_rep->tail_counter;
ticket hc = my_rep->head_counter;
// if tc!=r.tail_counter, the queue was not empty at some point between the two reads.
return ( tc==my_rep->tail_counter && ptrdiff_t(tc-hc-my_rep->n_invalid_entries)<=0 );
}
void concurrent_queue_base_v3::internal_set_capacity( ptrdiff_t capacity, size_t /*item_size*/ ) {
my_capacity = capacity<0 ? concurrent_queue_rep::infinite_capacity : capacity;
}
void concurrent_queue_base_v3::internal_finish_clear() {
size_t nq = my_rep->n_queue;
for( size_t i=0; i<nq; ++i ) {
page* tp = my_rep->array[i].tail_page;
__TBB_ASSERT( my_rep->array[i].head_page==tp, "at most one page should remain" );
if( tp!=NULL) {
if( tp!=invalid_page ) deallocate_page( tp );
my_rep->array[i].tail_page = NULL;
}
}
}
void concurrent_queue_base_v3::internal_throw_exception() const {
throw_exception( eid_bad_alloc );
}
void concurrent_queue_base_v3::assign( const concurrent_queue_base& src ) {
items_per_page = src.items_per_page;
my_capacity = src.my_capacity;
// copy concurrent_queue_rep.
my_rep->head_counter = src.my_rep->head_counter;
my_rep->tail_counter = src.my_rep->tail_counter;
my_rep->n_invalid_entries = src.my_rep->n_invalid_entries;
// copy micro_queues
for( size_t i = 0; i<my_rep->n_queue; ++i )
my_rep->array[i].assign( src.my_rep->array[i], *this);
__TBB_ASSERT( my_rep->head_counter==src.my_rep->head_counter && my_rep->tail_counter==src.my_rep->tail_counter,
"the source concurrent queue should not be concurrently modified." );
}
//------------------------------------------------------------------------
// concurrent_queue_iterator_rep
//------------------------------------------------------------------------
class concurrent_queue_iterator_rep: no_assign {
public:
ticket head_counter;
const concurrent_queue_base& my_queue;
const size_t offset_of_last;
concurrent_queue_base::page* array[concurrent_queue_rep::n_queue];
concurrent_queue_iterator_rep( const concurrent_queue_base& queue, size_t offset_of_last_ ) :
head_counter(queue.my_rep->head_counter),
my_queue(queue),
offset_of_last(offset_of_last_)
{
const concurrent_queue_rep& rep = *queue.my_rep;
for( size_t k=0; k<concurrent_queue_rep::n_queue; ++k )
array[k] = rep.array[k].head_page;
}
//! Set item to point to kth element. Return true if at end of queue or item is marked valid; false otherwise.
bool get_item( void*& item, size_t k ) {
if( k==my_queue.my_rep->tail_counter ) {
item = NULL;
return true;
} else {
concurrent_queue_base::page* p = array[concurrent_queue_rep::index(k)];
__TBB_ASSERT(p,NULL);
size_t i = k/concurrent_queue_rep::n_queue & (my_queue.items_per_page-1);
item = static_cast<unsigned char*>(static_cast<void*>(p)) + offset_of_last + my_queue.item_size*i;
return (p->mask & uintptr_t(1)<<i)!=0;
}
}
};
//------------------------------------------------------------------------
// concurrent_queue_iterator_base
//------------------------------------------------------------------------
void concurrent_queue_iterator_base_v3::initialize( const concurrent_queue_base& queue, size_t offset_of_last ) {
my_rep = cache_aligned_allocator<concurrent_queue_iterator_rep>().allocate(1);
new( my_rep ) concurrent_queue_iterator_rep(queue,offset_of_last);
size_t k = my_rep->head_counter;
if( !my_rep->get_item(my_item, k) ) advance();
}
concurrent_queue_iterator_base_v3::concurrent_queue_iterator_base_v3( const concurrent_queue_base& queue ) {
initialize(queue,0);
}
concurrent_queue_iterator_base_v3::concurrent_queue_iterator_base_v3( const concurrent_queue_base& queue, size_t offset_of_last ) {
initialize(queue,offset_of_last);
}
void concurrent_queue_iterator_base_v3::assign( const concurrent_queue_iterator_base& other ) {
if( my_rep!=other.my_rep ) {
if( my_rep ) {
cache_aligned_allocator<concurrent_queue_iterator_rep>().deallocate(my_rep, 1);
my_rep = NULL;
}
if( other.my_rep ) {
my_rep = cache_aligned_allocator<concurrent_queue_iterator_rep>().allocate(1);
new( my_rep ) concurrent_queue_iterator_rep( *other.my_rep );
}
}
my_item = other.my_item;
}
void concurrent_queue_iterator_base_v3::advance() {
__TBB_ASSERT( my_item, "attempt to increment iterator past end of queue" );
size_t k = my_rep->head_counter;
const concurrent_queue_base& queue = my_rep->my_queue;
#if TBB_USE_ASSERT
void* tmp;
my_rep->get_item(tmp,k);
__TBB_ASSERT( my_item==tmp, NULL );
#endif /* TBB_USE_ASSERT */
size_t i = k/concurrent_queue_rep::n_queue & (queue.items_per_page-1);
if( i==queue.items_per_page-1 ) {
concurrent_queue_base::page*& root = my_rep->array[concurrent_queue_rep::index(k)];
root = root->next;
}
// advance k
my_rep->head_counter = ++k;
if( !my_rep->get_item(my_item, k) ) advance();
}
concurrent_queue_iterator_base_v3::~concurrent_queue_iterator_base_v3() {
//delete my_rep;
cache_aligned_allocator<concurrent_queue_iterator_rep>().deallocate(my_rep, 1);
my_rep = NULL;
}
} // namespace internal
} // namespace tbb