blob: 29fd77c081d9e10f747714f2fd64e081542ac863 [file] [log] [blame]
/*-
* Copyright (c) 2007-2009 Bruce Simpson.
* Copyright (c) 2005 Robert N. M. Watson.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* IPv4 multicast socket, group, and socket option processing module.
*/
#include <sys/bsd_cdefs.h>
//__FBSDID("$FreeBSD$");
#include <sys/bsd_param.h>
#include <sys/bsd_systm.h>
#include <sys/bsd_kernel.h>
#include <sys/bsd_malloc.h>
#include <sys/bsd_mbuf.h>
#include <sys/bsd_protosw.h>
#include <sys/bsd_socket.h>
#include <sys/bsd_socketvar.h>
#include <sys/bsd_protosw.h>
//baoyg//#include <sys/bsd_sysctl.h>
#include <sys/bsd_ktr.h>
#include <sys/bsd_tree.h>
#include <net/bsd_if.h>
#include <net/bsd_if_dl.h>
#include <net/bsd_route.h>
#include <net/bsd_vnet.h>
#include <netinet/bsd_in.h>
#include <netinet/bsd_in_systm.h>
#include <netinet/bsd_in_pcb.h>
#include <netinet/bsd_in_var.h>
#include <netinet/bsd_ip_var.h>
#include <netinet/bsd_igmp_var.h>
#ifndef KTR_IGMPV3
#define KTR_IGMPV3 KTR_INET
#endif
#ifndef __SOCKUNION_DECLARED
union sockunion {
struct sockaddr_storage ss;
struct sockaddr sa;
struct sockaddr_dl sdl;
struct sockaddr_in sin;
};
typedef union sockunion sockunion_t;
#define __SOCKUNION_DECLARED
#endif /* __SOCKUNION_DECLARED */
static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
"IPv4 multicast PCB-layer source filter");
static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
"IPv4 multicast IGMP-layer source filter");
/*
* Locking:
* - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
* - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
* it can be taken by code in net/if.c also.
* - ip_moptions and in_mfilter are covered by the INP_WLOCK.
*
* struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
* any need for in_multi itself to be virtualized -- it is bound to an ifp
* anyway no matter what happens.
*/
struct mtx in_multi_mtx;
MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
/*
* Functions with non-static linkage defined in this file should be
* declared in in_var.h:
* imo_multi_filter()
* in_addmulti()
* in_delmulti()
* in_joingroup()
* in_joingroup_locked()
* in_leavegroup()
* in_leavegroup_locked()
* and ip_var.h:
* inp_freemoptions()
* inp_getmoptions()
* inp_setmoptions()
*
* XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
* and in_delmulti().
*/
static void imf_commit(struct in_mfilter *);
static int imf_get_source(struct in_mfilter *imf,
const struct sockaddr_in *psin,
struct in_msource **);
static struct in_msource *
imf_graft(struct in_mfilter *, const uint8_t,
const struct sockaddr_in *);
static void imf_leave(struct in_mfilter *);
static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
static void imf_purge(struct in_mfilter *);
static void imf_rollback(struct in_mfilter *);
static void imf_reap(struct in_mfilter *);
static int imo_grow(struct ip_moptions *);
static size_t imo_match_group(const struct ip_moptions *,
const struct ifnet *, const struct sockaddr *);
static struct in_msource *
imo_match_source(const struct ip_moptions *, const size_t,
const struct sockaddr *);
static void ims_merge(struct ip_msource *ims,
const struct in_msource *lims, const int rollback);
static int in_getmulti(struct ifnet *, const struct in_addr *,
struct in_multi **);
static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
const int noalloc, struct ip_msource **pims);
static int inm_is_ifp_detached(const struct in_multi *);
static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
static void inm_purge(struct in_multi *);
static void inm_reap(struct in_multi *);
static struct ip_moptions *
inp_findmoptions(struct inpcb *);
static int inp_get_source_filters(struct inpcb *, struct sockopt *);
static int inp_join_group(struct inpcb *, struct sockopt *);
static int inp_leave_group(struct inpcb *, struct sockopt *);
static struct ifnet *
inp_lookup_mcast_ifp(const struct inpcb *,
const struct sockaddr_in *, const struct in_addr);
static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
static int inp_set_source_filters(struct inpcb *, struct sockopt *);
//baoygstatic int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
//SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv4 multicast");
static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
/*SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
"Max source filters per group");
TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
*/
static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
/*SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
"Max source filters per socket");
TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
*/
int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
/*SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
&in_mcast_loop, 0, "Loopback multicast datagrams by default");
TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
"Per-interface stack-wide source filters");
*/
/*
* Inline function which wraps assertions for a valid ifp.
* The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
* is detached.
*/
static int __inline
inm_is_ifp_detached(const struct in_multi *inm)
{
struct ifnet *ifp;
KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
ifp = inm->inm_ifma->ifma_ifp;
if (ifp != NULL) {
/*
* Sanity check that netinet's notion of ifp is the
* same as net's.
*/
KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
}
return (ifp == NULL);
}
/*
* Initialize an in_mfilter structure to a known state at t0, t1
* with an empty source filter list.
*/
static __inline void
imf_init(struct in_mfilter *imf, const int st0, const int st1)
{
memset(imf, 0, sizeof(struct in_mfilter));
RB_INIT(&imf->imf_sources);
imf->imf_st[0] = st0;
imf->imf_st[1] = st1;
}
/*
* Resize the ip_moptions vector to the next power-of-two minus 1.
* May be called with locks held; do not sleep.
*/
static int
imo_grow(struct ip_moptions *imo)
{
struct in_multi **nmships;
struct in_multi **omships;
struct in_mfilter *nmfilters;
struct in_mfilter *omfilters;
size_t idx;
size_t newmax;
size_t oldmax;
nmships = NULL;
nmfilters = NULL;
omships = imo->imo_membership;
omfilters = imo->imo_mfilters;
oldmax = imo->imo_max_memberships;
newmax = ((oldmax + 1) * 2) - 1;
if (newmax <= IP_MAX_MEMBERSHIPS) {
nmships = (struct in_multi **)bsd_realloc(omships,
sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
nmfilters = (struct in_mfilter *)bsd_realloc(omfilters,
sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
if (nmships != NULL && nmfilters != NULL) {
/* Initialize newly allocated source filter heads. */
for (idx = oldmax; idx < newmax; idx++) {
imf_init(&nmfilters[idx], MCAST_UNDEFINED,
MCAST_EXCLUDE);
}
imo->imo_max_memberships = newmax;
imo->imo_membership = nmships;
imo->imo_mfilters = nmfilters;
}
}
if (nmships == NULL || nmfilters == NULL) {
if (nmships != NULL)
bsd_free(nmships, M_IPMOPTS);
if (nmfilters != NULL)
bsd_free(nmfilters, M_INMFILTER);
return (ETOOMANYREFS);
}
return (0);
}
/*
* Find an IPv4 multicast group entry for this ip_moptions instance
* which matches the specified group, and optionally an interface.
* Return its index into the array, or -1 if not found.
*/
static size_t
imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
const struct sockaddr *group)
{
const struct sockaddr_in *gsin;
struct in_multi **pinm;
int idx;
int nmships;
gsin = (const struct sockaddr_in *)group;
/* The imo_membership array may be lazy allocated. */
if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
return (-1);
nmships = imo->imo_num_memberships;
pinm = &imo->imo_membership[0];
for (idx = 0; idx < nmships; idx++, pinm++) {
if (*pinm == NULL)
continue;
if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
break;
}
}
if (idx >= nmships)
idx = -1;
return (idx);
}
/*
* Find an IPv4 multicast source entry for this imo which matches
* the given group index for this socket, and source address.
*
* NOTE: This does not check if the entry is in-mode, merely if
* it exists, which may not be the desired behaviour.
*/
static struct in_msource *
imo_match_source(const struct ip_moptions *imo, const size_t gidx,
const struct sockaddr *src)
{
struct ip_msource find;
struct in_mfilter *imf;
struct ip_msource *ims;
const sockunion_t *psa;
KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
("%s: invalid index %d\n", __func__, (int)gidx));
/* The imo_mfilters array may be lazy allocated. */
if (imo->imo_mfilters == NULL)
return (NULL);
imf = &imo->imo_mfilters[gidx];
/* Source trees are keyed in host byte order. */
psa = (const sockunion_t *)src;
find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
return ((struct in_msource *)ims);
}
/*
* Perform filtering for multicast datagrams on a socket by group and source.
*
* Returns 0 if a datagram should be allowed through, or various error codes
* if the socket was not a member of the group, or the source was muted, etc.
*/
int
imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
const struct sockaddr *group, const struct sockaddr *src)
{
size_t gidx;
struct in_msource *ims;
int mode;
KASSERT(ifp != NULL, ("%s: null ifp", __func__));
gidx = imo_match_group(imo, ifp, group);
if (gidx == -1)
return (MCAST_NOTGMEMBER);
/*
* Check if the source was included in an (S,G) join.
* Allow reception on exclusive memberships by default,
* reject reception on inclusive memberships by default.
* Exclude source only if an in-mode exclude filter exists.
* Include source only if an in-mode include filter exists.
* NOTE: We are comparing group state here at IGMP t1 (now)
* with socket-layer t0 (since last downcall).
*/
mode = imo->imo_mfilters[gidx].imf_st[1];
ims = imo_match_source(imo, gidx, src);
if ((ims == NULL && mode == MCAST_INCLUDE) ||
(ims != NULL && ims->imsl_st[0] != mode))
return (MCAST_NOTSMEMBER);
return (MCAST_PASS);
}
/*
* Find and return a reference to an in_multi record for (ifp, group),
* and bump its reference count.
* If one does not exist, try to allocate it, and update link-layer multicast
* filters on ifp to listen for group.
* Assumes the IN_MULTI lock is held across the call.
* Return 0 if successful, otherwise return an appropriate error code.
*/
static int
in_getmulti(struct ifnet *ifp, const struct in_addr *group,
struct in_multi **pinm)
{
struct sockaddr_in gsin;
struct ifmultiaddr *ifma;
struct in_ifinfo *ii;
struct in_multi *inm;
int error;
IN_MULTI_LOCK_ASSERT();
ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
inm = inm_lookup(ifp, *group);
if (inm != NULL) {
/*
* If we already joined this group, just bump the
* refcount and return it.
*/
KASSERT(inm->inm_refcount >= 1,
("%s: bad refcount %d", __func__, inm->inm_refcount));
++inm->inm_refcount;
*pinm = inm;
return (0);
}
memset(&gsin, 0, sizeof(gsin));
gsin.sin_family = AF_INET;
gsin.sin_len = sizeof(struct sockaddr_in);
gsin.sin_addr = *group;
/*
* Check if a link-layer group is already associated
* with this network-layer group on the given ifnet.
*/
error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
if (error != 0)
return (error);
/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
IF_ADDR_LOCK(ifp);
/*
* If something other than netinet is occupying the link-layer
* group, print a meaningful error message and back out of
* the allocation.
* Otherwise, bump the refcount on the existing network-layer
* group association and return it.
*/
if (ifma->ifma_protospec != NULL) {
inm = (struct in_multi *)ifma->ifma_protospec;
#ifdef INVARIANTS
KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
__func__));
KASSERT(ifma->ifma_addr->sa_family == AF_INET,
("%s: ifma not AF_INET", __func__));
KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
!in_hosteq(inm->inm_addr, *group))
panic("%s: ifma %p is inconsistent with %p (%s)",
__func__, ifma, inm, inet_ntoa(*group));
#endif
++inm->inm_refcount;
*pinm = inm;
IF_ADDR_UNLOCK(ifp);
return (0);
}
IF_ADDR_LOCK_ASSERT(ifp);
/*
* A new in_multi record is needed; allocate and initialize it.
* We DO NOT perform an IGMP join as the in_ layer may need to
* push an initial source list down to IGMP to support SSM.
*
* The initial source filter state is INCLUDE, {} as per the RFC.
*/
inm = bsd_malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
if (inm == NULL) {
if_delmulti_ifma(ifma);
IF_ADDR_UNLOCK(ifp);
return (ENOMEM);
}
inm->inm_addr = *group;
inm->inm_ifp = ifp;
inm->inm_igi = ii->ii_igmp;
inm->inm_ifma = ifma;
inm->inm_refcount = 1;
inm->inm_state = IGMP_NOT_MEMBER;
/*
* Pending state-changes per group are subject to a bounds check.
*/
IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
RB_INIT(&inm->inm_srcs);
ifma->ifma_protospec = inm;
*pinm = inm;
IF_ADDR_UNLOCK(ifp);
return (0);
}
/*
* Drop a reference to an in_multi record.
*
* If the refcount drops to 0, free the in_multi record and
* delete the underlying link-layer membership.
*/
void
inm_release_locked(struct in_multi *inm)
{
struct ifmultiaddr *ifma;
IN_MULTI_LOCK_ASSERT();
CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
if (--inm->inm_refcount > 0) {
CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
inm->inm_refcount);
return;
}
CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
ifma = inm->inm_ifma;
/* XXX this access is not covered by IF_ADDR_LOCK */
CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
KASSERT(ifma->ifma_protospec == inm,
("%s: ifma_protospec != inm", __func__));
ifma->ifma_protospec = NULL;
inm_purge(inm);
bsd_free(inm, M_IPMADDR);
if_delmulti_ifma(ifma);
}
/*
* Clear recorded source entries for a group.
* Used by the IGMP code. Caller must hold the IN_MULTI lock.
* FIXME: Should reap.
*/
void
inm_clear_recorded(struct in_multi *inm)
{
struct ip_msource *ims;
IN_MULTI_LOCK_ASSERT();
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
if (ims->ims_stp) {
ims->ims_stp = 0;
--inm->inm_st[1].iss_rec;
}
}
KASSERT(inm->inm_st[1].iss_rec == 0,
("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
}
/*
* Record a source as pending for a Source-Group IGMPv3 query.
* This lives here as it modifies the shared tree.
*
* inm is the group descriptor.
* naddr is the address of the source to record in network-byte order.
*
* If the net.inet.igmp.sgalloc sysctl is non-zero, we will
* lazy-allocate a source node in response to an SG query.
* Otherwise, no allocation is performed. This saves some memory
* with the trade-off that the source will not be reported to the
* router if joined in the window between the query response and
* the group actually being joined on the local host.
*
* VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
* This turns off the allocation of a recorded source entry if
* the group has not been joined.
*
* Return 0 if the source didn't exist or was already marked as recorded.
* Return 1 if the source was marked as recorded by this function.
* Return <0 if any error occured (negated errno code).
*/
int
inm_record_source(struct in_multi *inm, const in_addr_t naddr)
{
struct ip_msource find;
struct ip_msource *ims, *nims;
IN_MULTI_LOCK_ASSERT();
find.ims_haddr = ntohl(naddr);
ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
if (ims && ims->ims_stp)
return (0);
if (ims == NULL) {
if (inm->inm_nsrc == in_mcast_maxgrpsrc)
return (-ENOSPC);
nims = bsd_malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO);
if (nims == NULL)
return (-ENOMEM);
nims->ims_haddr = find.ims_haddr;
RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
++inm->inm_nsrc;
ims = nims;
}
/*
* Mark the source as recorded and update the recorded
* source count.
*/
++ims->ims_stp;
++inm->inm_st[1].iss_rec;
return (1);
}
/*
* Return a pointer to an in_msource owned by an in_mfilter,
* given its source address.
* Lazy-allocate if needed. If this is a new entry its filter state is
* undefined at t0.
*
* imf is the filter set being modified.
* haddr is the source address in *host* byte-order.
*
* SMPng: May be called with locks held; malloc must not block.
*/
static int
imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
struct in_msource **plims)
{
struct ip_msource find;
struct ip_msource *ims, *nims;
struct in_msource *lims;
int error;
error = 0;
ims = NULL;
lims = NULL;
/* key is host byte order */
find.ims_haddr = ntohl(psin->sin_addr.s_addr);
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
lims = (struct in_msource *)ims;
if (lims == NULL) {
if (imf->imf_nsrc == in_mcast_maxsocksrc)
return (ENOSPC);
nims = bsd_malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO);
if (nims == NULL)
return (ENOMEM);
lims = (struct in_msource *)nims;
lims->ims_haddr = find.ims_haddr;
lims->imsl_st[0] = MCAST_UNDEFINED;
RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
++imf->imf_nsrc;
}
*plims = lims;
return (error);
}
/*
* Graft a source entry into an existing socket-layer filter set,
* maintaining any required invariants and checking allocations.
*
* The source is marked as being in the new filter mode at t1.
*
* Return the pointer to the new node, otherwise return NULL.
*/
static struct in_msource *
imf_graft(struct in_mfilter *imf, const uint8_t st1,
const struct sockaddr_in *psin)
{
struct ip_msource *nims;
struct in_msource *lims;
nims = bsd_malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO);
if (nims == NULL)
return (NULL);
lims = (struct in_msource *)nims;
lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
lims->imsl_st[0] = MCAST_UNDEFINED;
lims->imsl_st[1] = st1;
RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
++imf->imf_nsrc;
return (lims);
}
/*
* Prune a source entry from an existing socket-layer filter set,
* maintaining any required invariants and checking allocations.
*
* The source is marked as being left at t1, it is not freed.
*
* Return 0 if no error occurred, otherwise return an errno value.
*/
static int
imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
{
struct ip_msource find;
struct ip_msource *ims;
struct in_msource *lims;
/* key is host byte order */
find.ims_haddr = ntohl(psin->sin_addr.s_addr);
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
if (ims == NULL)
return (ENOENT);
lims = (struct in_msource *)ims;
lims->imsl_st[1] = MCAST_UNDEFINED;
return (0);
}
/*
* Revert socket-layer filter set deltas at t1 to t0 state.
*/
static void
imf_rollback(struct in_mfilter *imf)
{
struct ip_msource *ims, *tims;
struct in_msource *lims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == lims->imsl_st[1]) {
/* no change at t1 */
continue;
} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
/* revert change to existing source at t1 */
lims->imsl_st[1] = lims->imsl_st[0];
} else {
/* revert source added t1 */
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
bsd_free(ims, M_INMFILTER);
imf->imf_nsrc--;
}
}
imf->imf_st[1] = imf->imf_st[0];
}
/*
* Mark socket-layer filter set as INCLUDE {} at t1.
*/
static void
imf_leave(struct in_mfilter *imf)
{
struct ip_msource *ims;
struct in_msource *lims;
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
lims->imsl_st[1] = MCAST_UNDEFINED;
}
imf->imf_st[1] = MCAST_INCLUDE;
}
/*
* Mark socket-layer filter set deltas as committed.
*/
static void
imf_commit(struct in_mfilter *imf)
{
struct ip_msource *ims;
struct in_msource *lims;
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
lims->imsl_st[0] = lims->imsl_st[1];
}
imf->imf_st[0] = imf->imf_st[1];
}
/*
* Reap unreferenced sources from socket-layer filter set.
*/
static void
imf_reap(struct in_mfilter *imf)
{
struct ip_msource *ims, *tims;
struct in_msource *lims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
lims = (struct in_msource *)ims;
if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
(lims->imsl_st[1] == MCAST_UNDEFINED)) {
CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
bsd_free(ims, M_INMFILTER);
imf->imf_nsrc--;
}
}
}
/*
* Purge socket-layer filter set.
*/
static void
imf_purge(struct in_mfilter *imf)
{
struct ip_msource *ims, *tims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
bsd_free(ims, M_INMFILTER);
imf->imf_nsrc--;
}
imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
KASSERT(RB_EMPTY(&imf->imf_sources),
("%s: imf_sources not empty", __func__));
}
/*
* Look up a source filter entry for a multicast group.
*
* inm is the group descriptor to work with.
* haddr is the host-byte-order IPv4 address to look up.
* noalloc may be non-zero to suppress allocation of sources.
* *pims will be set to the address of the retrieved or allocated source.
*
* SMPng: NOTE: may be called with locks held.
* Return 0 if successful, otherwise return a non-zero error code.
*/
static int
inm_get_source(struct in_multi *inm, const in_addr_t haddr,
const int noalloc, struct ip_msource **pims)
{
struct ip_msource find;
struct ip_msource *ims, *nims;
#ifdef KTR
struct in_addr ia;
#endif
find.ims_haddr = haddr;
ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
if (ims == NULL && !noalloc) {
if (inm->inm_nsrc == in_mcast_maxgrpsrc)
return (ENOSPC);
nims = bsd_malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO);
if (nims == NULL)
return (ENOMEM);
nims->ims_haddr = haddr;
RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
++inm->inm_nsrc;
ims = nims;
#ifdef KTR
ia.s_addr = htonl(haddr);
CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
inet_ntoa(ia), ims);
#endif
}
*pims = ims;
return (0);
}
/*
* Merge socket-layer source into IGMP-layer source.
* If rollback is non-zero, perform the inverse of the merge.
*/
static void
ims_merge(struct ip_msource *ims, const struct in_msource *lims,
const int rollback)
{
int n = rollback ? -1 : 1;
#ifdef KTR
struct in_addr ia;
ia.s_addr = htonl(ims->ims_haddr);
#endif
if (lims->imsl_st[0] == MCAST_EXCLUDE) {
CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
__func__, n, inet_ntoa(ia));
ims->ims_st[1].ex -= n;
} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
__func__, n, inet_ntoa(ia));
ims->ims_st[1].in -= n;
}
if (lims->imsl_st[1] == MCAST_EXCLUDE) {
CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
__func__, n, inet_ntoa(ia));
ims->ims_st[1].ex += n;
} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
__func__, n, inet_ntoa(ia));
ims->ims_st[1].in += n;
}
}
/*
* Atomically update the global in_multi state, when a membership's
* filter list is being updated in any way.
*
* imf is the per-inpcb-membership group filter pointer.
* A fake imf may be passed for in-kernel consumers.
*
* XXX This is a candidate for a set-symmetric-difference style loop
* which would eliminate the repeated lookup from root of ims nodes,
* as they share the same key space.
*
* If any error occurred this function will back out of refcounts
* and return a non-zero value.
*/
static int
inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
{
struct ip_msource *ims, *nims;
struct in_msource *lims;
int schanged, error;
int nsrc0, nsrc1;
schanged = 0;
error = 0;
nsrc1 = nsrc0 = 0;
/*
* Update the source filters first, as this may fail.
* Maintain count of in-mode filters at t0, t1. These are
* used to work out if we transition into ASM mode or not.
* Maintain a count of source filters whose state was
* actually modified by this operation.
*/
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
++schanged;
if (error)
break;
ims_merge(nims, lims, 0);
}
if (error) {
struct ip_msource *bims;
RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == lims->imsl_st[1])
continue;
(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
if (bims == NULL)
continue;
ims_merge(bims, lims, 1);
}
goto out_reap;
}
CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
__func__, nsrc0, nsrc1);
/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
if (imf->imf_st[0] == imf->imf_st[1] &&
imf->imf_st[1] == MCAST_INCLUDE) {
if (nsrc1 == 0) {
CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
--inm->inm_st[1].iss_in;
}
}
/* Handle filter mode transition on socket. */
if (imf->imf_st[0] != imf->imf_st[1]) {
CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
__func__, imf->imf_st[0], imf->imf_st[1]);
if (imf->imf_st[0] == MCAST_EXCLUDE) {
CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
--inm->inm_st[1].iss_ex;
} else if (imf->imf_st[0] == MCAST_INCLUDE) {
CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
--inm->inm_st[1].iss_in;
}
if (imf->imf_st[1] == MCAST_EXCLUDE) {
CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
inm->inm_st[1].iss_ex++;
} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
inm->inm_st[1].iss_in++;
}
}
/*
* Track inm filter state in terms of listener counts.
* If there are any exclusive listeners, stack-wide
* membership is exclusive.
* Otherwise, if only inclusive listeners, stack-wide is inclusive.
* If no listeners remain, state is undefined at t1,
* and the IGMP lifecycle for this group should finish.
*/
if (inm->inm_st[1].iss_ex > 0) {
CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
} else if (inm->inm_st[1].iss_in > 0) {
CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
} else {
CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
}
/* Decrement ASM listener count on transition out of ASM mode. */
if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
(imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
--inm->inm_st[1].iss_asm;
}
/* Increment ASM listener count on transition to ASM mode. */
if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
inm->inm_st[1].iss_asm++;
}
CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
inm_print(inm);
out_reap:
if (schanged > 0) {
CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
inm_reap(inm);
}
return (error);
}
/*
* Mark an in_multi's filter set deltas as committed.
* Called by IGMP after a state change has been enqueued.
*/
void
inm_commit(struct in_multi *inm)
{
struct ip_msource *ims;
CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
inm_print(inm);
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
ims->ims_st[0] = ims->ims_st[1];
}
inm->inm_st[0] = inm->inm_st[1];
}
/*
* Reap unreferenced nodes from an in_multi's filter set.
*/
static void
inm_reap(struct in_multi *inm)
{
struct ip_msource *ims, *tims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
ims->ims_stp != 0)
continue;
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
bsd_free(ims, M_IPMSOURCE);
inm->inm_nsrc--;
}
}
/*
* Purge all source nodes from an in_multi's filter set.
*/
static void
inm_purge(struct in_multi *inm)
{
struct ip_msource *ims, *tims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
bsd_free(ims, M_IPMSOURCE);
inm->inm_nsrc--;
}
}
/*
* Join a multicast group; unlocked entry point.
*
* SMPng: XXX: in_joingroup() is called from in_control() when Giant
* is not held. Fortunately, ifp is unlikely to have been detached
* at this point, so we assume it's OK to recurse.
*/
int
in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
/*const*/ struct in_mfilter *imf, struct in_multi **pinm)
{
int error;
IN_MULTI_LOCK();
error = in_joingroup_locked(ifp, gina, imf, pinm);
IN_MULTI_UNLOCK();
return (error);
}
/*
* Join a multicast group; real entry point.
*
* Only preserves atomicity at inm level.
* NOTE: imf argument cannot be const due to sys/tree.h limitations.
*
* If the IGMP downcall fails, the group is not joined, and an error
* code is returned.
*/
int
in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
/*const*/ struct in_mfilter *imf, struct in_multi **pinm)
{
struct in_mfilter timf;
struct in_multi *inm;
int error;
IN_MULTI_LOCK_ASSERT();
CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
inet_ntoa(*gina), ifp, ifp->if_xname);
error = 0;
inm = NULL;
/*
* If no imf was specified (i.e. kernel consumer),
* fake one up and assume it is an ASM join.
*/
if (imf == NULL) {
imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
imf = &timf;
}
error = in_getmulti(ifp, gina, &inm);
if (error) {
CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
return (error);
}
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
error = inm_merge(inm, imf);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
goto out_inm_release;
}
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
error = igmp_change_state(inm);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
goto out_inm_release;
}
out_inm_release:
if (error) {
CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
inm_release_locked(inm);
} else {
*pinm = inm;
}
return (error);
}
/*
* Leave a multicast group; unlocked entry point.
*/
int
in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
{
struct ifnet *ifp;
int error;
ifp = inm->inm_ifp;
IN_MULTI_LOCK();
error = in_leavegroup_locked(inm, imf);
IN_MULTI_UNLOCK();
return (error);
}
/*
* Leave a multicast group; real entry point.
* All source filters will be expunged.
*
* Only preserves atomicity at inm level.
*
* Holding the write lock for the INP which contains imf
* is highly advisable. We can't assert for it as imf does not
* contain a back-pointer to the owning inp.
*
* Note: This is not the same as inm_release(*) as this function also
* makes a state change downcall into IGMP.
*/
int
in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
{
struct in_mfilter timf;
int error;
error = 0;
IN_MULTI_LOCK_ASSERT();
CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
inm, inet_ntoa(inm->inm_addr),
(inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
imf);
/*
* If no imf was specified (i.e. kernel consumer),
* fake one up and assume it is an ASM join.
*/
if (imf == NULL) {
imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
imf = &timf;
}
/*
* Begin state merge transaction at IGMP layer.
*
* As this particular invocation should not cause any memory
* to be allocated, and there is no opportunity to roll back
* the transaction, it MUST NOT fail.
*/
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
error = inm_merge(inm, imf);
KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
error = igmp_change_state(inm);
if (error)
CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
inm_release_locked(inm);
return (error);
}
/*#ifndef BURN_BRIDGES*/
/*
* Join an IPv4 multicast group in (*,G) exclusive mode.
* The group must be a 224.0.0.0/24 link-scope group.
* This KPI is for legacy kernel consumers only.
*/
struct in_multi *
in_addmulti(struct in_addr *ap, struct ifnet *ifp)
{
struct in_multi *pinm;
int error;
KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
error = in_joingroup(ifp, ap, NULL, &pinm);
if (error != 0)
pinm = NULL;
return (pinm);
}
/*
* Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
* This KPI is for legacy kernel consumers only.
*/
void
in_delmulti(struct in_multi *inm)
{
(void)in_leavegroup(inm, NULL);
}
/*#endif*/
/*
* Block or unblock an ASM multicast source on an inpcb.
* This implements the delta-based API described in RFC 3678.
*
* The delta-based API applies only to exclusive-mode memberships.
* An IGMP downcall will be performed.
*
* SMPng: NOTE: Must take Giant as a join may create a new ifma.
*
* Return 0 if successful, otherwise return an appropriate error code.
*/
static int
inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
sockunion_t *gsa, *ssa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_msource *ims;
struct in_multi *inm;
size_t idx;
uint16_t fmode;
int error, doblock;
ifp = NULL;
error = 0;
doblock = 0;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = (sockunion_t *)&gsr.gsr_group;
ssa = (sockunion_t *)&gsr.gsr_source;
switch (sopt->sopt_name) {
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE: {
struct ip_mreq_source mreqs;
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq_source),
sizeof(struct ip_mreq_source));
if (error)
return (error);
gsa->sin.sin_family = AF_INET;
gsa->sin.sin_len = sizeof(struct sockaddr_in);
gsa->sin.sin_addr = mreqs.imr_multiaddr;
ssa->sin.sin_family = AF_INET;
ssa->sin.sin_len = sizeof(struct sockaddr_in);
ssa->sin.sin_addr = mreqs.imr_sourceaddr;
if (!in_nullhost(mreqs.imr_interface))
INADDR_TO_IFP(mreqs.imr_interface, ifp);
if (sopt->sopt_name == IP_BLOCK_SOURCE)
doblock = 1;
CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
__func__, inet_ntoa(mreqs.imr_interface), ifp);
break;
}
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
if (error)
return (error);
if (gsa->sin.sin_family != AF_INET ||
gsa->sin.sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
if (ssa->sin.sin_family != AF_INET ||
ssa->sin.sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
return (EADDRNOTAVAIL);
ifp = ifnet_byindex(gsr.gsr_interface);
if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
doblock = 1;
break;
default:
CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
__func__, sopt->sopt_name);
return (EOPNOTSUPP);
break;
}
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
return (EINVAL);
/*
* Check if we are actually a member of this group.
*/
imo = inp_findmoptions(inp);
idx = imo_match_group(imo, ifp, &gsa->sa);
if (idx == -1 || imo->imo_mfilters == NULL) {
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
KASSERT(imo->imo_mfilters != NULL,
("%s: imo_mfilters not allocated", __func__));
imf = &imo->imo_mfilters[idx];
inm = imo->imo_membership[idx];
/*
* Attempting to use the delta-based API on an
* non exclusive-mode membership is an error.
*/
fmode = imf->imf_st[0];
if (fmode != MCAST_EXCLUDE) {
error = EINVAL;
goto out_inp_locked;
}
/*
* Deal with error cases up-front:
* Asked to block, but already blocked; or
* Asked to unblock, but nothing to unblock.
* If adding a new block entry, allocate it.
*/
ims = imo_match_source(imo, idx, &ssa->sa);
if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
INP_WLOCK_ASSERT(inp);
/*
* Begin state merge transaction at socket layer.
*/
if (doblock) {
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
ims = imf_graft(imf, fmode, &ssa->sin);
if (ims == NULL)
error = ENOMEM;
} else {
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
error = imf_prune(imf, &ssa->sin);
}
if (error) {
CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
goto out_imf_rollback;
}
/*
* Begin state merge transaction at IGMP layer.
*/
IN_MULTI_LOCK();
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
error = inm_merge(inm, imf);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
goto out_imf_rollback;
}
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
error = igmp_change_state(inm);
if (error)
CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
IN_MULTI_UNLOCK();
out_imf_rollback:
if (error)
imf_rollback(imf);
else
imf_commit(imf);
imf_reap(imf);
out_inp_locked:
INP_WUNLOCK(inp);
return (error);
}
/*
* Given an inpcb, return its multicast options structure pointer. Accepts
* an unlocked inpcb pointer, but will return it locked. May sleep.
*
* SMPng: NOTE: Potentially calls bsd_malloc(M_WAITOK) with Giant held.
* SMPng: NOTE: Returns with the INP write lock held.
*/
static struct ip_moptions *
inp_findmoptions(struct inpcb *inp)
{
struct ip_moptions *imo;
struct in_multi **immp;
struct in_mfilter *imfp;
size_t idx;
INP_WLOCK(inp);
if (inp->inp_moptions != NULL)
return (inp->inp_moptions);
INP_WUNLOCK(inp);
imo = bsd_malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
immp = bsd_malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, M_WAITOK | M_ZERO);
imfp = bsd_malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, M_INMFILTER, M_WAITOK);
imo->imo_multicast_ifp = NULL;
imo->imo_multicast_addr.s_addr = INADDR_ANY;
imo->imo_multicast_vif = -1;
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
imo->imo_multicast_loop = in_mcast_loop;
imo->imo_num_memberships = 0;
imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
imo->imo_membership = immp;
/* Initialize per-group source filters. */
for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
imo->imo_mfilters = imfp;
INP_WLOCK(inp);
if (inp->inp_moptions != NULL) {
bsd_free(imfp, M_INMFILTER);
bsd_free(immp, M_IPMOPTS);
bsd_free(imo, M_IPMOPTS);
return (inp->inp_moptions);
}
inp->inp_moptions = imo;
return (imo);
}
/*
* Discard the IP multicast options (and source filters).
*
* SMPng: NOTE: assumes INP write lock is held.
*/
void
inp_freemoptions(struct ip_moptions *imo)
{
struct in_mfilter *imf;
size_t idx, nmships;
KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
nmships = imo->imo_num_memberships;
for (idx = 0; idx < nmships; ++idx) {
imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
if (imf)
imf_leave(imf);
(void)in_leavegroup(imo->imo_membership[idx], imf);
if (imf)
imf_purge(imf);
}
if (imo->imo_mfilters)
bsd_free(imo->imo_mfilters, M_INMFILTER);
bsd_free(imo->imo_membership, M_IPMOPTS);
bsd_free(imo, M_IPMOPTS);
}
/*
* Atomically get source filters on a socket for an IPv4 multicast group.
* Called with INP lock held; returns with lock released.
*/
static int
inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
{
struct __msfilterreq msfr;
sockunion_t *gsa;
struct ifnet *ifp;
struct ip_moptions *imo;
struct in_mfilter *imf;
struct ip_msource *ims;
struct in_msource *lims;
struct sockaddr_in *psin;
struct sockaddr_storage *ptss;
struct sockaddr_storage *tss;
int error;
size_t idx, nsrcs, ncsrcs;
INP_WLOCK_ASSERT(inp);
imo = inp->inp_moptions;
KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
sizeof(struct __msfilterreq));
if (error)
return (error);
if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
return (EINVAL);
ifp = ifnet_byindex(msfr.msfr_ifindex);
if (ifp == NULL)
return (EINVAL);
INP_WLOCK(inp);
/*
* Lookup group on the socket.
*/
gsa = (sockunion_t *)&msfr.msfr_group;
idx = imo_match_group(imo, ifp, &gsa->sa);
if (idx == -1 || imo->imo_mfilters == NULL) {
INP_WUNLOCK(inp);
return (EADDRNOTAVAIL);
}
imf = &imo->imo_mfilters[idx];
/*
* Ignore memberships which are in limbo.
*/
if (imf->imf_st[1] == MCAST_UNDEFINED) {
INP_WUNLOCK(inp);
return (EAGAIN);
}
msfr.msfr_fmode = imf->imf_st[1];
/*
* If the user specified a buffer, copy out the source filter
* entries to userland gracefully.
* We only copy out the number of entries which userland
* has asked for, but we always tell userland how big the
* buffer really needs to be.
*/
tss = NULL;
if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
tss = bsd_malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO);
if (tss == NULL) {
INP_WUNLOCK(inp);
return (ENOBUFS);
}
}
/*
* Count number of sources in-mode at t0.
* If buffer space exists and remains, copy out source entries.
*/
nsrcs = msfr.msfr_nsrcs;
ncsrcs = 0;
ptss = tss;
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == MCAST_UNDEFINED ||
lims->imsl_st[0] != imf->imf_st[0])
continue;
++ncsrcs;
if (tss != NULL && nsrcs > 0) {
psin = (struct sockaddr_in *)ptss;
psin->sin_family = AF_INET;
psin->sin_len = sizeof(struct sockaddr_in);
psin->sin_addr.s_addr = htonl(lims->ims_haddr);
psin->sin_port = 0;
++ptss;
--nsrcs;
}
}
INP_WUNLOCK(inp);
if (tss != NULL) {
error = copyout(tss, msfr.msfr_srcs,
sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
bsd_free(tss, M_TEMP);
if (error)
return (error);
}
msfr.msfr_nsrcs = ncsrcs;
error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
return (error);
}
/*
* Return the IP multicast options in response to user getsockopt().
*/
int
inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
{
struct ip_mreqn mreqn;
struct ip_moptions *imo;
struct ifnet *ifp;
struct in_ifaddr *ia;
int error, optval;
u_char coptval;
INP_WLOCK(inp);
imo = inp->inp_moptions;
/*
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
* or is a divert socket, reject it.
*/
if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
(inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
INP_WUNLOCK(inp);
return (EOPNOTSUPP);
}
error = 0;
switch (sopt->sopt_name) {
case IP_MULTICAST_VIF:
if (imo != NULL)
optval = imo->imo_multicast_vif;
else
optval = -1;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof(int));
break;
case IP_MULTICAST_IF:
memset(&mreqn, 0, sizeof(struct ip_mreqn));
if (imo != NULL) {
ifp = imo->imo_multicast_ifp;
if (!in_nullhost(imo->imo_multicast_addr)) {
mreqn.imr_address = imo->imo_multicast_addr;
} else if (ifp != NULL) {
mreqn.imr_ifindex = ifp->if_index;
IFP_TO_IA(ifp, ia);
if (ia != NULL) {
mreqn.imr_address =
IA_SIN(ia)->sin_addr;
ifa_free(&ia->ia_ifa);
}
}
}
INP_WUNLOCK(inp);
if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
error = sooptcopyout(sopt, &mreqn,
sizeof(struct ip_mreqn));
} else {
error = sooptcopyout(sopt, &mreqn.imr_address,
sizeof(struct in_addr));
}
break;
case IP_MULTICAST_TTL:
if (imo == 0)
optval = coptval = IP_DEFAULT_MULTICAST_TTL;
else
optval = coptval = imo->imo_multicast_ttl;
INP_WUNLOCK(inp);
if (sopt->sopt_valsize == sizeof(u_char))
error = sooptcopyout(sopt, &coptval, sizeof(u_char));
else
error = sooptcopyout(sopt, &optval, sizeof(int));
break;
case IP_MULTICAST_LOOP:
if (imo == 0)
optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
else
optval = coptval = imo->imo_multicast_loop;
INP_WUNLOCK(inp);
if (sopt->sopt_valsize == sizeof(u_char))
error = sooptcopyout(sopt, &coptval, sizeof(u_char));
else
error = sooptcopyout(sopt, &optval, sizeof(int));
break;
case IP_MSFILTER:
if (imo == NULL) {
error = EADDRNOTAVAIL;
INP_WUNLOCK(inp);
} else {
error = inp_get_source_filters(inp, sopt);
}
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
INP_UNLOCK_ASSERT(inp);
return (error);
}
/*
* Look up the ifnet to use for a multicast group membership,
* given the IPv4 address of an interface, and the IPv4 group address.
*
* This routine exists to support legacy multicast applications
* which do not understand that multicast memberships are scoped to
* specific physical links in the networking stack, or which need
* to join link-scope groups before IPv4 addresses are configured.
*
* If inp is non-NULL, use this socket's current FIB number for any
* required FIB lookup.
* If ina is INADDR_ANY, look up the group address in the unicast FIB,
* and use its ifp; usually, this points to the default next-hop.
*
* If the FIB lookup fails, attempt to use the first non-loopback
* interface with multicast capability in the system as a
* last resort. The legacy IPv4 ASM API requires that we do
* this in order to allow groups to be joined when the routing
* table has not yet been populated during boot.
*
* Returns NULL if no ifp could be found.
*
* SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
* FUTURE: Implement IPv4 source-address selection.
*/
static struct ifnet *
inp_lookup_mcast_ifp(const struct inpcb *inp,
const struct sockaddr_in *gsin, const struct in_addr ina)
{
struct ifnet *ifp;
KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
("%s: not multicast", __func__));
ifp = NULL;
if (!in_nullhost(ina)) {
INADDR_TO_IFP(ina, ifp);
} else {
struct route ro;
ro.ro_rt = NULL;
memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
if (ro.ro_rt != NULL) {
ifp = ro.ro_rt->rt_ifp;
KASSERT(ifp != NULL, ("%s: null ifp", __func__));
RTFREE(ro.ro_rt);
} else {
struct in_ifaddr *ia;
struct ifnet *mifp;
mifp = NULL;
IN_IFADDR_RLOCK();
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
mifp = ia->ia_ifp;
if (!(mifp->if_flags & IFF_LOOPBACK) &&
(mifp->if_flags & IFF_MULTICAST)) {
ifp = mifp;
break;
}
}
IN_IFADDR_RUNLOCK();
}
}
return (ifp);
}
/*
* Join an IPv4 multicast group, possibly with a source.
*/
static int
inp_join_group(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
sockunion_t *gsa, *ssa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_multi *inm;
struct in_msource *lims;
size_t idx;
int error, is_new;
ifp = NULL;
imf = NULL;
error = 0;
is_new = 0;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = (sockunion_t *)&gsr.gsr_group;
gsa->ss.ss_family = AF_UNSPEC;
ssa = (sockunion_t *)&gsr.gsr_source;
ssa->ss.ss_family = AF_UNSPEC;
switch (sopt->sopt_name) {
case IP_ADD_MEMBERSHIP:
case IP_ADD_SOURCE_MEMBERSHIP: {
struct ip_mreq_source mreqs;
if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq),
sizeof(struct ip_mreq));
/*
* Do argument switcharoo from ip_mreq into
* ip_mreq_source to avoid using two instances.
*/
mreqs.imr_interface = mreqs.imr_sourceaddr;
mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq_source),
sizeof(struct ip_mreq_source));
}
if (error)
return (error);
gsa->sin.sin_family = AF_INET;
gsa->sin.sin_len = sizeof(struct sockaddr_in);
gsa->sin.sin_addr = mreqs.imr_multiaddr;
if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
ssa->sin.sin_family = AF_INET;
ssa->sin.sin_len = sizeof(struct sockaddr_in);
ssa->sin.sin_addr = mreqs.imr_sourceaddr;
}
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
return (EINVAL);
ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
mreqs.imr_interface);
CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
__func__, inet_ntoa(mreqs.imr_interface), ifp);
break;
}
case MCAST_JOIN_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
if (sopt->sopt_name == MCAST_JOIN_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_req),
sizeof(struct group_req));
} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
}
if (error)
return (error);
if (gsa->sin.sin_family != AF_INET ||
gsa->sin.sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
/*
* Overwrite the port field if present, as the sockaddr
* being copied in may be matched with a binary comparison.
*/
gsa->sin.sin_port = 0;
if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
if (ssa->sin.sin_family != AF_INET ||
ssa->sin.sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
ssa->sin.sin_port = 0;
}
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
return (EINVAL);
if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
return (EADDRNOTAVAIL);
ifp = ifnet_byindex(gsr.gsr_interface);
break;
default:
CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
__func__, sopt->sopt_name);
return (EOPNOTSUPP);
break;
}
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
return (EADDRNOTAVAIL);
imo = inp_findmoptions(inp);
idx = imo_match_group(imo, ifp, &gsa->sa);
if (idx == -1) {
is_new = 1;
} else {
inm = imo->imo_membership[idx];
imf = &imo->imo_mfilters[idx];
if (ssa->ss.ss_family != AF_UNSPEC) {
/*
* MCAST_JOIN_SOURCE_GROUP on an exclusive membership
* is an error. On an existing inclusive membership,
* it just adds the source to the filter list.
*/
if (imf->imf_st[1] != MCAST_INCLUDE) {
error = EINVAL;
goto out_inp_locked;
}
/* Throw out duplicates. */
lims = imo_match_source(imo, idx, &ssa->sa);
if (lims != NULL) {
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
} else {
/*
* MCAST_JOIN_GROUP on an existing inclusive
* membership is an error; if you want to change
* filter mode, you must use the userland API
* setsourcefilter().
*/
if (imf->imf_st[1] == MCAST_INCLUDE) {
error = EINVAL;
goto out_inp_locked;
}
}
}
/*
* Begin state merge transaction at socket layer.
*/
INP_WLOCK_ASSERT(inp);
if (is_new) {
if (imo->imo_num_memberships == imo->imo_max_memberships) {
error = imo_grow(imo);
if (error)
goto out_inp_locked;
}
/*
* Allocate the new slot upfront so we can deal with
* grafting the new source filter in same code path
* as for join-source on existing membership.
*/
idx = imo->imo_num_memberships;
imo->imo_membership[idx] = NULL;
imo->imo_num_memberships++;
KASSERT(imo->imo_mfilters != NULL,
("%s: imf_mfilters vector was not allocated", __func__));
imf = &imo->imo_mfilters[idx];
KASSERT(RB_EMPTY(&imf->imf_sources),
("%s: imf_sources not empty", __func__));
}
/*
* Graft new source into filter list for this inpcb's
* membership of the group. The in_multi may not have
* been allocated yet if this is a new membership, however,
* the in_mfilter slot will be allocated and must be initialized.
*/
if (ssa->ss.ss_family != AF_UNSPEC) {
/* Membership starts in IN mode */
if (is_new) {
CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
} else {
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
}
lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
if (lims == NULL) {
CTR1(KTR_IGMPV3, "%s: merge imf state failed",
__func__);
error = ENOMEM;
goto out_imo_free;
}
} else {
/* No address specified; Membership starts in EX mode */
if (is_new) {
CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
}
}
/*
* Begin state merge transaction at IGMP layer.
*/
IN_MULTI_LOCK();
if (is_new) {
error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
&inm);
if (error)
goto out_imo_free;
imo->imo_membership[idx] = inm;
} else {
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
error = inm_merge(inm, imf);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
__func__);
goto out_imf_rollback;
}
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
error = igmp_change_state(inm);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
__func__);
goto out_imf_rollback;
}
}
IN_MULTI_UNLOCK();
out_imf_rollback:
INP_WLOCK_ASSERT(inp);
if (error) {
imf_rollback(imf);
if (is_new)
imf_purge(imf);
else
imf_reap(imf);
} else {
imf_commit(imf);
}
out_imo_free:
if (error && is_new) {
imo->imo_membership[idx] = NULL;
--imo->imo_num_memberships;
}
out_inp_locked:
INP_WUNLOCK(inp);
return (error);
}
/*
* Leave an IPv4 multicast group on an inpcb, possibly with a source.
*/
static int
inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
struct ip_mreq_source mreqs;
sockunion_t *gsa, *ssa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_msource *ims;
struct in_multi *inm;
size_t idx;
int error, is_final;
ifp = NULL;
error = 0;
is_final = 1;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = (sockunion_t *)&gsr.gsr_group;
gsa->ss.ss_family = AF_UNSPEC;
ssa = (sockunion_t *)&gsr.gsr_source;
ssa->ss.ss_family = AF_UNSPEC;
switch (sopt->sopt_name) {
case IP_DROP_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq),
sizeof(struct ip_mreq));
/*
* Swap interface and sourceaddr arguments,
* as ip_mreq and ip_mreq_source are laid
* out differently.
*/
mreqs.imr_interface = mreqs.imr_sourceaddr;
mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq_source),
sizeof(struct ip_mreq_source));
}
if (error)
return (error);
gsa->sin.sin_family = AF_INET;
gsa->sin.sin_len = sizeof(struct sockaddr_in);
gsa->sin.sin_addr = mreqs.imr_multiaddr;
if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
ssa->sin.sin_family = AF_INET;
ssa->sin.sin_len = sizeof(struct sockaddr_in);
ssa->sin.sin_addr = mreqs.imr_sourceaddr;
}
if (!in_nullhost(gsa->sin.sin_addr))
INADDR_TO_IFP(mreqs.imr_interface, ifp);
CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
__func__, inet_ntoa(mreqs.imr_interface), ifp);
break;
case MCAST_LEAVE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_req),
sizeof(struct group_req));
} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
}
if (error)
return (error);
if (gsa->sin.sin_family != AF_INET ||
gsa->sin.sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
if (ssa->sin.sin_family != AF_INET ||
ssa->sin.sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
}
if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
return (EADDRNOTAVAIL);
ifp = ifnet_byindex(gsr.gsr_interface);
break;
default:
CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
__func__, sopt->sopt_name);
return (EOPNOTSUPP);
break;
}
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
return (EINVAL);
if (ifp == NULL)
return (EADDRNOTAVAIL);
/*
* Find the membership in the membership array.
*/
imo = inp_findmoptions(inp);
idx = imo_match_group(imo, ifp, &gsa->sa);
if (idx == -1) {
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
inm = imo->imo_membership[idx];
imf = &imo->imo_mfilters[idx];
if (ssa->ss.ss_family != AF_UNSPEC)
is_final = 0;
/*
* Begin state merge transaction at socket layer.
*/
INP_WLOCK_ASSERT(inp);
/*
* If we were instructed only to leave a given source, do so.
* MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
*/
if (is_final) {
imf_leave(imf);
} else {
if (imf->imf_st[0] == MCAST_EXCLUDE) {
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
ims = imo_match_source(imo, idx, &ssa->sa);
if (ims == NULL) {
CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
inet_ntoa(ssa->sin.sin_addr), "not ");
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
error = imf_prune(imf, &ssa->sin);
if (error) {
CTR1(KTR_IGMPV3, "%s: merge imf state failed",
__func__);
goto out_inp_locked;
}
}
/*
* Begin state merge transaction at IGMP layer.
*/
IN_MULTI_LOCK();
if (is_final) {
/*
* Give up the multicast address record to which
* the membership points.
*/
(void)in_leavegroup_locked(inm, imf);
} else {
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
error = inm_merge(inm, imf);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
__func__);
goto out_imf_rollback;
}
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
error = igmp_change_state(inm);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
__func__);
}
}
IN_MULTI_UNLOCK();
out_imf_rollback:
if (error)
imf_rollback(imf);
else
imf_commit(imf);
imf_reap(imf);
if (is_final) {
/* Remove the gap in the membership and filter array. */
for (++idx; idx < imo->imo_num_memberships; ++idx) {
imo->imo_membership[idx-1] = imo->imo_membership[idx];
imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
}
imo->imo_num_memberships--;
}
out_inp_locked:
INP_WUNLOCK(inp);
return (error);
}
/*
* Select the interface for transmitting IPv4 multicast datagrams.
*
* Either an instance of struct in_addr or an instance of struct ip_mreqn
* may be passed to this socket option. An address of INADDR_ANY or an
* interface index of 0 is used to remove a previous selection.
* When no interface is selected, one is chosen for every send.
*/
static int
inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
{
struct in_addr addr;
struct ip_mreqn mreqn;
struct ifnet *ifp;
struct ip_moptions *imo;
int error;
if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
/*
* An interface index was specified using the
* Linux-derived ip_mreqn structure.
*/
error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
sizeof(struct ip_mreqn));
if (error)
return (error);
if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
return (EINVAL);
if (mreqn.imr_ifindex == 0) {
ifp = NULL;
} else {
ifp = ifnet_byindex(mreqn.imr_ifindex);
if (ifp == NULL)
return (EADDRNOTAVAIL);
}
} else {
/*
* An interface was specified by IPv4 address.
* This is the traditional BSD usage.
*/
error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
sizeof(struct in_addr));
if (error)
return (error);
if (in_nullhost(addr)) {
ifp = NULL;
} else {
INADDR_TO_IFP(addr, ifp);
if (ifp == NULL)
return (EADDRNOTAVAIL);
}
CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
inet_ntoa(addr));
}
/* Reject interfaces which do not support multicast. */
if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
imo = inp_findmoptions(inp);
imo->imo_multicast_ifp = ifp;
imo->imo_multicast_addr.s_addr = INADDR_ANY;
INP_WUNLOCK(inp);
return (0);
}
/*
* Atomically set source filters on a socket for an IPv4 multicast group.
*
* SMPng: NOTE: Potentially calls bsd_malloc(M_WAITOK) with Giant held.
*/
static int
inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
{
struct __msfilterreq msfr;
sockunion_t *gsa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_multi *inm;
size_t idx;
int error;
error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
sizeof(struct __msfilterreq));
if (error)
return (error);
if (msfr.msfr_nsrcs > in_mcast_maxsocksrc ||
(msfr.msfr_fmode != MCAST_EXCLUDE &&
msfr.msfr_fmode != MCAST_INCLUDE))
return (EINVAL);
if (msfr.msfr_group.ss_family != AF_INET ||
msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
return (EINVAL);
gsa = (sockunion_t *)&msfr.msfr_group;
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
return (EINVAL);
gsa->sin.sin_port = 0; /* ignore port */
if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
return (EADDRNOTAVAIL);
ifp = ifnet_byindex(msfr.msfr_ifindex);
if (ifp == NULL)
return (EADDRNOTAVAIL);
/*
* Take the INP write lock.
* Check if this socket is a member of this group.
*/
imo = inp_findmoptions(inp);
idx = imo_match_group(imo, ifp, &gsa->sa);
if (idx == -1 || imo->imo_mfilters == NULL) {
error = EADDRNOTAVAIL;
goto out_inp_locked;
}
inm = imo->imo_membership[idx];
imf = &imo->imo_mfilters[idx];
/*
* Begin state merge transaction at socket layer.
*/
INP_WLOCK_ASSERT(inp);
imf->imf_st[1] = msfr.msfr_fmode;
/*
* Apply any new source filters, if present.
* Make a copy of the user-space source vector so
* that we may copy them with a single copyin. This
* allows us to deal with page faults up-front.
*/
if (msfr.msfr_nsrcs > 0) {
struct in_msource *lims;
struct sockaddr_in *psin;
struct sockaddr_storage *kss, *pkss;
int i;
INP_WUNLOCK(inp);
CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
__func__, (unsigned long)msfr.msfr_nsrcs);
kss = bsd_malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK);
error = copyin(msfr.msfr_srcs, kss,
sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
if (error) {
bsd_free(kss, M_TEMP);
return (error);
}
INP_WLOCK(inp);
/*
* Mark all source filters as UNDEFINED at t1.
* Restore new group filter mode, as imf_leave()
* will set it to INCLUDE.
*/
imf_leave(imf);
imf->imf_st[1] = msfr.msfr_fmode;
/*
* Update socket layer filters at t1, lazy-allocating
* new entries. This saves a bunch of memory at the
* cost of one RB_FIND() per source entry; duplicate
* entries in the msfr_nsrcs vector are ignored.
* If we encounter an error, rollback transaction.
*
* XXX This too could be replaced with a set-symmetric
* difference like loop to avoid walking from root
* every time, as the key space is common.
*/
for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
psin = (struct sockaddr_in *)pkss;
if (psin->sin_family != AF_INET) {
error = EAFNOSUPPORT;
break;
}
if (psin->sin_len != sizeof(struct sockaddr_in)) {
error = EINVAL;
break;
}
error = imf_get_source(imf, psin, &lims);
if (error)
break;
lims->imsl_st[1] = imf->imf_st[1];
}
bsd_free(kss, M_TEMP);
}
if (error)
goto out_imf_rollback;
INP_WLOCK_ASSERT(inp);
IN_MULTI_LOCK();
/*
* Begin state merge transaction at IGMP layer.
*/
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
error = inm_merge(inm, imf);
if (error) {
CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
goto out_imf_rollback;
}
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
error = igmp_change_state(inm);
if (error)
CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
IN_MULTI_UNLOCK();
out_imf_rollback:
if (error)
imf_rollback(imf);
else
imf_commit(imf);
imf_reap(imf);
out_inp_locked:
INP_WUNLOCK(inp);
return (error);
}
/*
* Set the IP multicast options in response to user setsockopt().
*
* Many of the socket options handled in this function duplicate the
* functionality of socket options in the regular unicast API. However,
* it is not possible to merge the duplicate code, because the idempotence
* of the IPv4 multicast part of the BSD Sockets API must be preserved;
* the effects of these options must be treated as separate and distinct.
*
* SMPng: XXX: Unlocked read of inp_socket believed OK.
* FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
* is refactored to no longer use vifs.
*/
int
inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
{
struct ip_moptions *imo;
int error;
error = 0;
/*
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
* or is a divert socket, reject it.
*/
if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
(inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
return (EOPNOTSUPP);
switch (sopt->sopt_name) {
case IP_MULTICAST_VIF: {
int vifi;
/*
* Select a multicast VIF for transmission.
* Only useful if multicast forwarding is active.
*/
if (legal_vif_num == NULL) {
error = EOPNOTSUPP;
break;
}
error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
if (error)
break;
if (!legal_vif_num(vifi) && (vifi != -1)) {
error = EINVAL;
break;
}
imo = inp_findmoptions(inp);
imo->imo_multicast_vif = vifi;
INP_WUNLOCK(inp);
break;
}
case IP_MULTICAST_IF:
error = inp_set_multicast_if(inp, sopt);
break;
case IP_MULTICAST_TTL: {
u_char ttl;
/*
* Set the IP time-to-live for outgoing multicast packets.
* The original multicast API required a char argument,
* which is inconsistent with the rest of the socket API.
* We allow either a char or an int.
*/
if (sopt->sopt_valsize == sizeof(u_char)) {
error = sooptcopyin(sopt, &ttl, sizeof(u_char),
sizeof(u_char));
if (error)
break;
} else {
u_int ittl;
error = sooptcopyin(sopt, &ittl, sizeof(u_int),
sizeof(u_int));
if (error)
break;
if (ittl > 255) {
error = EINVAL;
break;
}
ttl = (u_char)ittl;
}
imo = inp_findmoptions(inp);
imo->imo_multicast_ttl = ttl;
INP_WUNLOCK(inp);
break;
}
case IP_MULTICAST_LOOP: {
u_char loop;
/*
* Set the loopback flag for outgoing multicast packets.
* Must be zero or one. The original multicast API required a
* char argument, which is inconsistent with the rest
* of the socket API. We allow either a char or an int.
*/
if (sopt->sopt_valsize == sizeof(u_char)) {
error = sooptcopyin(sopt, &loop, sizeof(u_char),
sizeof(u_char));
if (error)
break;
} else {
u_int iloop;
error = sooptcopyin(sopt, &iloop, sizeof(u_int),
sizeof(u_int));
if (error)
break;
loop = (u_char)iloop;
}
imo = inp_findmoptions(inp);
imo->imo_multicast_loop = !!loop;
INP_WUNLOCK(inp);
break;
}
case IP_ADD_MEMBERSHIP:
case IP_ADD_SOURCE_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
error = inp_join_group(inp, sopt);
break;
case IP_DROP_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_LEAVE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
error = inp_leave_group(inp, sopt);
break;
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = inp_block_unblock_source(inp, sopt);
break;
case IP_MSFILTER:
error = inp_set_source_filters(inp, sopt);
break;
default:
error = EOPNOTSUPP;
break;
}
INP_UNLOCK_ASSERT(inp);
return (error);
}
/*
* Expose IGMP's multicast filter mode and source list(s) to userland,
* keyed by (ifindex, group).
* The filter mode is written out as a uint32_t, followed by
* 0..n of struct in_addr.
* For use by ifmcstat(8).
* SMPng: NOTE: unlocked read of ifindex space.
*/
/*
static int
sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
{
struct in_addr src, group;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct in_multi *inm;
struct ip_msource *ims;
int *name;
int retval;
u_int namelen;
uint32_t fmode, ifindex;
name = (int *)arg1;
namelen = arg2;
if (req->newptr != NULL)
return (EPERM);
if (namelen != 2)
return (EINVAL);
ifindex = name[0];
if (ifindex <= 0 || ifindex > V_if_index) {
CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
__func__, ifindex);
return (ENOENT);
}
group.s_addr = name[1];
if (!IN_MULTICAST(ntohl(group.s_addr))) {
CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
__func__, inet_ntoa(group));
return (EINVAL);
}
ifp = ifnet_byindex(ifindex);
if (ifp == NULL) {
CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
__func__, ifindex);
return (ENOENT);
}
retval = sysctl_wire_old_buffer(req,
sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
if (retval)
return (retval);
IN_MULTI_LOCK();
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_INET ||
ifma->ifma_protospec == NULL)
continue;
inm = (struct in_multi *)ifma->ifma_protospec;
if (!in_hosteq(inm->inm_addr, group))
continue;
fmode = inm->inm_st[1].iss_fmode;
retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
if (retval != 0)
break;
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
#ifdef KTR
struct in_addr ina;
ina.s_addr = htonl(ims->ims_haddr);
CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
inet_ntoa(ina));
#endif
*//*
* Only copy-out sources which are in-mode.
*//*
if (fmode != ims_get_mode(inm, ims, 1)) {
CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
__func__);
continue;
}
src.s_addr = htonl(ims->ims_haddr);
retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
if (retval != 0)
break;
}
}
IF_ADDR_UNLOCK(ifp);
IN_MULTI_UNLOCK();
return (retval);
}
*/
#ifdef KTR
static const char *inm_modestrs[] = { "un", "in", "ex" };
static const char *
inm_mode_str(const int mode)
{
if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
return (inm_modestrs[mode]);
return ("??");
}
static const char *inm_statestrs[] = {
"not-member",
"silent",
"idle",
"lazy",
"sleeping",
"awakening",
"query-pending",
"sg-query-pending",
"leaving"
};
static const char *
inm_state_str(const int state)
{
if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
return (inm_statestrs[state]);
return ("??");
}
/*
* Dump an in_multi structure to the console.
*/
void
inm_print(const struct in_multi *inm)
{
int t;
if ((ktr_mask & KTR_IGMPV3) == 0)
return;
printf("%s: --- begin inm %p ---\n", __func__, inm);
printf("addr %s ifp %p(%s) ifma %p\n",
inet_ntoa(inm->inm_addr),
inm->inm_ifp,
inm->inm_ifp->if_xname,
inm->inm_ifma);
printf("timer %u state %s refcount %u scq.len %u\n",
inm->inm_timer,
inm_state_str(inm->inm_state),
inm->inm_refcount,
inm->inm_scq.ifq_len);
printf("igi %p nsrc %lu sctimer %u scrv %u\n",
inm->inm_igi,
inm->inm_nsrc,
inm->inm_sctimer,
inm->inm_scrv);
for (t = 0; t < 2; t++) {
printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
inm_mode_str(inm->inm_st[t].iss_fmode),
inm->inm_st[t].iss_asm,
inm->inm_st[t].iss_ex,
inm->inm_st[t].iss_in,
inm->inm_st[t].iss_rec);
}
printf("%s: --- end inm %p ---\n", __func__, inm);
}
#else /* !KTR */
void
inm_print(const struct in_multi *inm)
{
}
#endif /* KTR */
RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);