blob: 0d925654b119bc2778b83fc1c906ff54fdd0f35b [file] [log] [blame]
/*
* Copyright (c) 2010-2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Blake Hechtman
*/
machine(MachineType:TCC, "TCC Cache")
: CacheMemory * L2cache;
bool WB; /*is this cache Writeback?*/
Cycles l2_request_latency := 50;
Cycles l2_response_latency := 20;
// From the TCPs or SQCs
MessageBuffer * requestFromTCP, network="From", virtual_network="1", vnet_type="request";
// To the Cores. TCC deals only with TCPs/SQCs.
MessageBuffer * responseToCore, network="To", virtual_network="3", vnet_type="response";
// From the NB
MessageBuffer * probeFromNB, network="From", virtual_network="0", vnet_type="request";
MessageBuffer * responseFromNB, network="From", virtual_network="2", vnet_type="response";
// To the NB
MessageBuffer * requestToNB, network="To", virtual_network="0", vnet_type="request";
MessageBuffer * responseToNB, network="To", virtual_network="2", vnet_type="response";
MessageBuffer * unblockToNB, network="To", virtual_network="4", vnet_type="unblock";
MessageBuffer * triggerQueue;
{
// EVENTS
enumeration(Event, desc="TCC Events") {
// Requests coming from the Cores
RdBlk, desc="RdBlk event";
WrVicBlk, desc="L1 Write Through";
WrVicBlkBack, desc="L1 Write Through(dirty cache)";
Atomic, desc="Atomic Op";
AtomicDone, desc="AtomicOps Complete";
AtomicNotDone, desc="AtomicOps not Complete";
Data, desc="data messgae";
// Coming from this TCC
L2_Repl, desc="L2 Replacement";
// Probes
PrbInv, desc="Invalidating probe";
// Coming from Memory Controller
WBAck, desc="writethrough ack from memory";
}
// STATES
state_declaration(State, desc="TCC State", default="TCC_State_I") {
M, AccessPermission:Read_Write, desc="Modified(dirty cache only)";
W, AccessPermission:Read_Write, desc="Written(dirty cache only)";
V, AccessPermission:Read_Only, desc="Valid";
I, AccessPermission:Invalid, desc="Invalid";
IV, AccessPermission:Busy, desc="Waiting for Data";
WI, AccessPermission:Busy, desc="Waiting on Writethrough Ack";
A, AccessPermission:Busy, desc="Invalid waiting on atomici Data";
}
enumeration(RequestType, desc="To communicate stats from transitions to recordStats") {
DataArrayRead, desc="Read the data array";
DataArrayWrite, desc="Write the data array";
TagArrayRead, desc="Read the data array";
TagArrayWrite, desc="Write the data array";
}
// STRUCTURES
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (diff from memory?)";
DataBlock DataBlk, desc="Data for the block";
WriteMask writeMask, desc="Dirty byte mask";
}
structure(TBE, desc="...") {
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block";
bool Dirty, desc="Is the data dirty?";
bool Shared, desc="Victim hit by shared probe";
MachineID From, desc="Waiting for writeback from...";
NetDest Destination, desc="Data destination";
int numAtomics, desc="number remaining atomics";
int atomicDoneCnt, desc="number AtomicDones triggered";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
TBETable TBEs, template="<TCC_TBE>", constructor="m_number_of_TBEs";
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
void unset_tbe();
void wakeUpAllBuffers();
void wakeUpBuffers(Addr a);
void wakeUpAllBuffers(Addr a);
MachineID mapAddressToMachine(Addr addr, MachineType mtype);
// FUNCTION DEFINITIONS
Tick clockEdge();
Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
return static_cast(Entry, "pointer", L2cache.lookup(addr));
}
DataBlock getDataBlock(Addr addr), return_by_ref="yes" {
return getCacheEntry(addr).DataBlk;
}
bool presentOrAvail(Addr addr) {
return L2cache.isTagPresent(addr) || L2cache.cacheAvail(addr);
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if (is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:I;
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
cache_entry.CacheState := state;
}
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
functionalMemoryRead(pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
}
num_functional_writes := num_functional_writes +
functionalMemoryWrite(pkt);
return num_functional_writes;
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
return TCC_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
return TCC_State_to_permission(cache_entry.CacheState);
}
return AccessPermission:NotPresent;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(TCC_State_to_permission(state));
}
}
void recordRequestType(RequestType request_type, Addr addr) {
if (request_type == RequestType:DataArrayRead) {
L2cache.recordRequestType(CacheRequestType:DataArrayRead, addr);
} else if (request_type == RequestType:DataArrayWrite) {
L2cache.recordRequestType(CacheRequestType:DataArrayWrite, addr);
} else if (request_type == RequestType:TagArrayRead) {
L2cache.recordRequestType(CacheRequestType:TagArrayRead, addr);
} else if (request_type == RequestType:TagArrayWrite) {
L2cache.recordRequestType(CacheRequestType:TagArrayWrite, addr);
}
}
bool checkResourceAvailable(RequestType request_type, Addr addr) {
if (request_type == RequestType:DataArrayRead) {
return L2cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
} else if (request_type == RequestType:DataArrayWrite) {
return L2cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
} else if (request_type == RequestType:TagArrayRead) {
return L2cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
} else if (request_type == RequestType:TagArrayWrite) {
return L2cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
} else {
error("Invalid RequestType type in checkResourceAvailable");
return true;
}
}
// ** OUT_PORTS **
// Three classes of ports
// Class 1: downward facing network links to NB
out_port(requestToNB_out, CPURequestMsg, requestToNB);
out_port(responseToNB_out, ResponseMsg, responseToNB);
out_port(unblockToNB_out, UnblockMsg, unblockToNB);
// Class 2: upward facing ports to GPU cores
out_port(responseToCore_out, ResponseMsg, responseToCore);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
//
// request queue going to NB
//
// ** IN_PORTS **
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
TBE tbe := TBEs.lookup(in_msg.addr);
Entry cache_entry := getCacheEntry(in_msg.addr);
// There is a possible race where multiple AtomicDone triggers can be
// sent if another Atomic to the same address is issued after the
// AtomicDone is triggered but before the message arrives here. For
// that case we count the number of AtomicDones in flight for this
// address and only call AtomicDone to deallocate the TBE when it is
// the last in flight message.
if (tbe.numAtomics == 0 && tbe.atomicDoneCnt == 1) {
trigger(Event:AtomicDone, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:AtomicNotDone, in_msg.addr, cache_entry, tbe);
}
}
}
}
in_port(responseFromNB_in, ResponseMsg, responseFromNB) {
if (responseFromNB_in.isReady(clockEdge())) {
peek(responseFromNB_in, ResponseMsg, block_on="addr") {
TBE tbe := TBEs.lookup(in_msg.addr);
Entry cache_entry := getCacheEntry(in_msg.addr);
if (in_msg.Type == CoherenceResponseType:NBSysResp) {
if(presentOrAvail(in_msg.addr)) {
trigger(Event:Data, in_msg.addr, cache_entry, tbe);
} else {
Addr victim := L2cache.cacheProbe(in_msg.addr);
trigger(Event:L2_Repl, victim, getCacheEntry(victim), TBEs.lookup(victim));
}
} else if (in_msg.Type == CoherenceResponseType:NBSysWBAck) {
trigger(Event:WBAck, in_msg.addr, cache_entry, tbe);
} else {
error("Unexpected Response Message to Core");
}
}
}
}
// Finally handling incoming requests (from TCP) and probes (from NB).
in_port(probeNetwork_in, NBProbeRequestMsg, probeFromNB) {
if (probeNetwork_in.isReady(clockEdge())) {
peek(probeNetwork_in, NBProbeRequestMsg) {
DPRINTF(RubySlicc, "%s\n", in_msg);
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
trigger(Event:PrbInv, in_msg.addr, cache_entry, tbe);
}
}
}
in_port(coreRequestNetwork_in, CPURequestMsg, requestFromTCP, rank=0) {
if (coreRequestNetwork_in.isReady(clockEdge())) {
peek(coreRequestNetwork_in, CPURequestMsg) {
TBE tbe := TBEs.lookup(in_msg.addr);
Entry cache_entry := getCacheEntry(in_msg.addr);
if (in_msg.Type == CoherenceRequestType:WriteThrough) {
if(WB) {
if(presentOrAvail(in_msg.addr)) {
trigger(Event:WrVicBlkBack, in_msg.addr, cache_entry, tbe);
} else {
Addr victim := L2cache.cacheProbe(in_msg.addr);
trigger(Event:L2_Repl, victim, getCacheEntry(victim), TBEs.lookup(victim));
}
} else {
trigger(Event:WrVicBlk, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceRequestType:Atomic) {
trigger(Event:Atomic, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:RdBlk) {
trigger(Event:RdBlk, in_msg.addr, cache_entry, tbe);
} else {
DPRINTF(RubySlicc, "%s\n", in_msg);
error("Unexpected Response Message to Core");
}
}
}
}
// BEGIN ACTIONS
action(i_invL2, "i", desc="invalidate TCC cache block") {
if (is_valid(cache_entry)) {
L2cache.deallocate(address);
}
unset_cache_entry();
}
action(sd_sendData, "sd", desc="send Shared response") {
peek(coreRequestNetwork_in, CPURequestMsg) {
enqueue(responseToCore_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysResp;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.Dirty := false;
out_msg.State := CoherenceState:Shared;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
action(sdr_sendDataResponse, "sdr", desc="send Shared response") {
enqueue(responseToCore_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysResp;
out_msg.Sender := machineID;
out_msg.Destination := tbe.Destination;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.Dirty := false;
out_msg.State := CoherenceState:Shared;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
enqueue(unblockToNB_out, UnblockMsg, 1) {
out_msg.addr := address;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(rd_requestData, "r", desc="Miss in L2, pass on") {
if(tbe.Destination.count()==1){
peek(coreRequestNetwork_in, CPURequestMsg) {
enqueue(requestToNB_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.Shared := false; // unneeded for this request
out_msg.MessageSize := in_msg.MessageSize;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
}
action(w_sendResponseWBAck, "w", desc="send WB Ack") {
peek(responseFromNB_in, ResponseMsg) {
enqueue(responseToCore_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysWBAck;
out_msg.Destination.clear();
out_msg.Destination.add(in_msg.WTRequestor);
out_msg.Sender := machineID;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
out_msg.instSeqNum := in_msg.instSeqNum;
}
}
}
action(swb_sendWBAck, "swb", desc="send WB Ack") {
peek(coreRequestNetwork_in, CPURequestMsg) {
enqueue(responseToCore_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysWBAck;
out_msg.Destination.clear();
out_msg.Destination.add(in_msg.Requestor);
out_msg.Sender := machineID;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
out_msg.instSeqNum := in_msg.instSeqNum;
}
}
}
action(ar_sendAtomicResponse, "ar", desc="send Atomic Ack") {
peek(responseFromNB_in, ResponseMsg) {
enqueue(responseToCore_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysResp;
out_msg.Destination.add(in_msg.WTRequestor);
out_msg.Sender := machineID;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := in_msg.DataBlk;
}
}
}
action(a_allocateBlock, "a", desc="allocate TCC block") {
if (is_invalid(cache_entry)) {
set_cache_entry(L2cache.allocate(address, new Entry));
cache_entry.writeMask.clear();
}
}
action(p_profileMiss, "pm", desc="Profile cache miss") {
L2cache.profileDemandMiss();
}
action(p_profileHit, "ph", desc="Profile cache hit") {
L2cache.profileDemandHit();
}
action(t_allocateTBE, "t", desc="allocate TBE Entry") {
if (is_invalid(tbe)) {
check_allocate(TBEs);
TBEs.allocate(address);
set_tbe(TBEs.lookup(address));
tbe.Destination.clear();
tbe.numAtomics := 0;
tbe.atomicDoneCnt := 0;
}
if (coreRequestNetwork_in.isReady(clockEdge())) {
peek(coreRequestNetwork_in, CPURequestMsg) {
if(in_msg.Type == CoherenceRequestType:RdBlk || in_msg.Type == CoherenceRequestType:Atomic){
tbe.Destination.add(in_msg.Requestor);
}
}
}
}
action(dt_deallocateTBE, "dt", desc="Deallocate TBE entry") {
tbe.Destination.clear();
TBEs.deallocate(address);
unset_tbe();
}
action(wcb_writeCacheBlock, "wcb", desc="write data to TCC") {
peek(responseFromNB_in, ResponseMsg) {
cache_entry.DataBlk := in_msg.DataBlk;
DPRINTF(RubySlicc, "Writing to TCC: %s\n", in_msg);
}
}
action(wdb_writeDirtyBytes, "wdb", desc="write data to TCC") {
peek(coreRequestNetwork_in, CPURequestMsg) {
cache_entry.DataBlk.copyPartial(in_msg.DataBlk,in_msg.writeMask);
cache_entry.writeMask.orMask(in_msg.writeMask);
DPRINTF(RubySlicc, "Writing to TCC: %s\n", in_msg);
}
}
action(wt_writeThrough, "wt", desc="write back data") {
peek(coreRequestNetwork_in, CPURequestMsg) {
enqueue(requestToNB_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Requestor := machineID;
out_msg.WTRequestor := in_msg.Requestor;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Data;
out_msg.Type := CoherenceRequestType:WriteThrough;
out_msg.Dirty := true;
out_msg.DataBlk := in_msg.DataBlk;
out_msg.writeMask.orMask(in_msg.writeMask);
out_msg.instSeqNum := in_msg.instSeqNum;
}
}
}
action(wb_writeBack, "wb", desc="write back data") {
enqueue(requestToNB_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Requestor := machineID;
out_msg.WTRequestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Data;
out_msg.Type := CoherenceRequestType:WriteThrough;
out_msg.Dirty := true;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.writeMask.orMask(cache_entry.writeMask);
}
}
action(at_atomicThrough, "at", desc="write back data") {
peek(coreRequestNetwork_in, CPURequestMsg) {
enqueue(requestToNB_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Requestor := machineID;
out_msg.WTRequestor := in_msg.Requestor;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Data;
out_msg.Type := CoherenceRequestType:Atomic;
out_msg.Dirty := true;
out_msg.writeMask.orMask(in_msg.writeMask);
}
}
}
action(pi_sendProbeResponseInv, "pi", desc="send probe ack inv, no data") {
enqueue(responseToNB_out, ResponseMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // TCC, L3 respond in same way to probes
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.Dirty := false;
out_msg.Hit := false;
out_msg.Ntsl := true;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(ut_updateTag, "ut", desc="update Tag (i.e. set MRU)") {
L2cache.setMRU(address);
}
action(p_popRequestQueue, "p", desc="pop request queue") {
coreRequestNetwork_in.dequeue(clockEdge());
}
action(pr_popResponseQueue, "pr", desc="pop response queue") {
responseFromNB_in.dequeue(clockEdge());
}
action(pp_popProbeQueue, "pp", desc="pop probe queue") {
probeNetwork_in.dequeue(clockEdge());
}
action(st_stallAndWaitRequest, "st", desc="Stall and wait on the address") {
stall_and_wait(coreRequestNetwork_in, address);
}
action(wada_wakeUpAllDependentsAddr, "wada", desc="Wake up any requests waiting for this address") {
wakeUpAllBuffers(address);
}
action(z_stall, "z", desc="stall") {
// built-in
}
action(ina_incrementNumAtomics, "ina", desc="inc num atomics") {
tbe.numAtomics := tbe.numAtomics + 1;
}
action(dna_decrementNumAtomics, "dna", desc="inc num atomics") {
tbe.numAtomics := tbe.numAtomics - 1;
if (tbe.numAtomics==0) {
enqueue(triggerQueue_out, TriggerMsg, 1) {
tbe.atomicDoneCnt := tbe.atomicDoneCnt + 1;
out_msg.addr := address;
out_msg.Type := TriggerType:AtomicDone;
}
}
}
action(dadc_decrementAtomicDoneCnt, "dadc", desc="decrement atomics done cnt flag") {
tbe.atomicDoneCnt := tbe.atomicDoneCnt - 1;
}
action(ptr_popTriggerQueue, "ptr", desc="pop Trigger") {
triggerQueue_in.dequeue(clockEdge());
}
// END ACTIONS
// BEGIN TRANSITIONS
// transitions from base
// Assumptions for ArrayRead/Write
// TBE checked before tags
// Data Read/Write requires Tag Read
// Stalling transitions do NOT check the tag array...and if they do,
// they can cause a resource stall deadlock!
transition(WI, {RdBlk, WrVicBlk, Atomic, WrVicBlkBack}) { //TagArrayRead} {
// by putting the stalled requests in a buffer, we reduce resource contention
// since they won't try again every cycle and will instead only try again once
// woken up
st_stallAndWaitRequest;
}
transition(A, {RdBlk, WrVicBlk, WrVicBlkBack}) { //TagArrayRead} {
// by putting the stalled requests in a buffer, we reduce resource contention
// since they won't try again every cycle and will instead only try again once
// woken up
st_stallAndWaitRequest;
}
transition(IV, {WrVicBlk, Atomic, WrVicBlkBack}) { //TagArrayRead} {
// by putting the stalled requests in a buffer, we reduce resource contention
// since they won't try again every cycle and will instead only try again once
// woken up
st_stallAndWaitRequest;
}
transition({M, V}, RdBlk) {TagArrayRead, DataArrayRead} {
p_profileHit;
sd_sendData;
ut_updateTag;
p_popRequestQueue;
}
transition(W, RdBlk, WI) {TagArrayRead, DataArrayRead} {
p_profileHit;
t_allocateTBE;
wb_writeBack;
}
transition(I, RdBlk, IV) {TagArrayRead} {
p_profileMiss;
t_allocateTBE;
rd_requestData;
p_popRequestQueue;
}
transition(IV, RdBlk) {
p_profileMiss;
t_allocateTBE;
rd_requestData;
p_popRequestQueue;
}
transition(V, Atomic, A) {TagArrayRead} {
p_profileHit;
i_invL2;
t_allocateTBE;
at_atomicThrough;
ina_incrementNumAtomics;
p_popRequestQueue;
}
transition(I, Atomic, A) {TagArrayRead} {
p_profileMiss;
i_invL2;
t_allocateTBE;
at_atomicThrough;
ina_incrementNumAtomics;
p_popRequestQueue;
}
transition(A, Atomic) {
p_profileMiss;
// by putting the stalled requests in a buffer, we reduce resource contention
// since they won't try again every cycle and will instead only try again once
// woken up
st_stallAndWaitRequest;
}
transition({M, W}, Atomic, WI) {TagArrayRead} {
p_profileHit;
t_allocateTBE;
wb_writeBack;
}
transition(I, WrVicBlk) {TagArrayRead} {
p_profileMiss;
wt_writeThrough;
p_popRequestQueue;
}
transition(V, WrVicBlk) {TagArrayRead, DataArrayWrite} {
p_profileHit;
ut_updateTag;
wdb_writeDirtyBytes;
wt_writeThrough;
p_popRequestQueue;
}
transition({V, M}, WrVicBlkBack, M) {TagArrayRead, TagArrayWrite, DataArrayWrite} {
p_profileHit;
ut_updateTag;
swb_sendWBAck;
wdb_writeDirtyBytes;
p_popRequestQueue;
}
transition(W, WrVicBlkBack) {TagArrayRead, TagArrayWrite, DataArrayWrite} {
p_profileHit;
ut_updateTag;
swb_sendWBAck;
wdb_writeDirtyBytes;
p_popRequestQueue;
}
transition(I, WrVicBlkBack, W) {TagArrayRead, TagArrayWrite, DataArrayWrite} {
p_profileMiss;
a_allocateBlock;
ut_updateTag;
swb_sendWBAck;
wdb_writeDirtyBytes;
p_popRequestQueue;
}
transition({W, M}, L2_Repl, WI) {TagArrayRead, DataArrayRead} {
t_allocateTBE;
wb_writeBack;
i_invL2;
}
transition({I, V}, L2_Repl, I) {TagArrayRead, TagArrayWrite} {
i_invL2;
}
transition({A, IV, WI}, L2_Repl) {
i_invL2;
}
transition({I, V}, PrbInv, I) {TagArrayRead, TagArrayWrite} {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition(M, PrbInv, W) {TagArrayRead, TagArrayWrite} {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition(W, PrbInv) {TagArrayRead} {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition({A, IV, WI}, PrbInv) {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition(IV, Data, V) {TagArrayRead, TagArrayWrite, DataArrayWrite} {
a_allocateBlock;
ut_updateTag;
wcb_writeCacheBlock;
sdr_sendDataResponse;
pr_popResponseQueue;
wada_wakeUpAllDependentsAddr;
dt_deallocateTBE;
}
transition(A, Data) {TagArrayRead, TagArrayWrite, DataArrayWrite} {
a_allocateBlock;
ar_sendAtomicResponse;
dna_decrementNumAtomics;
pr_popResponseQueue;
}
transition(A, AtomicDone, I) {TagArrayRead, TagArrayWrite} {
dt_deallocateTBE;
wada_wakeUpAllDependentsAddr;
ptr_popTriggerQueue;
}
transition(A, AtomicNotDone) {TagArrayRead} {
dadc_decrementAtomicDoneCnt;
ptr_popTriggerQueue;
}
//M,W should not see WBAck as the cache is in WB mode
//WBAcks do not need to check tags
transition({I, V, IV, A}, WBAck) {
w_sendResponseWBAck;
pr_popResponseQueue;
}
transition(WI, WBAck,I) {
dt_deallocateTBE;
pr_popResponseQueue;
}
}