| /* |
| * Copyright (c) 2010-2020 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2013 Amin Farmahini-Farahani |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/mem_ctrl.hh" |
| |
| #include "base/trace.hh" |
| #include "debug/DRAM.hh" |
| #include "debug/Drain.hh" |
| #include "debug/MemCtrl.hh" |
| #include "debug/NVM.hh" |
| #include "debug/QOS.hh" |
| #include "mem/dram_interface.hh" |
| #include "mem/mem_interface.hh" |
| #include "mem/nvm_interface.hh" |
| #include "sim/system.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace memory |
| { |
| |
| MemCtrl::MemCtrl(const MemCtrlParams &p) : |
| qos::MemCtrl(p), |
| port(name() + ".port", *this), isTimingMode(false), |
| retryRdReq(false), retryWrReq(false), |
| nextReqEvent([this] {processNextReqEvent(dram, respQueue, |
| respondEvent, nextReqEvent, retryWrReq);}, name()), |
| respondEvent([this] {processRespondEvent(dram, respQueue, |
| respondEvent, retryRdReq); }, name()), |
| dram(p.dram), |
| readBufferSize(dram->readBufferSize), |
| writeBufferSize(dram->writeBufferSize), |
| writeHighThreshold(writeBufferSize * p.write_high_thresh_perc / 100.0), |
| writeLowThreshold(writeBufferSize * p.write_low_thresh_perc / 100.0), |
| minWritesPerSwitch(p.min_writes_per_switch), |
| minReadsPerSwitch(p.min_reads_per_switch), |
| writesThisTime(0), readsThisTime(0), |
| memSchedPolicy(p.mem_sched_policy), |
| frontendLatency(p.static_frontend_latency), |
| backendLatency(p.static_backend_latency), |
| commandWindow(p.command_window), |
| prevArrival(0), |
| stats(*this) |
| { |
| DPRINTF(MemCtrl, "Setting up controller\n"); |
| |
| readQueue.resize(p.qos_priorities); |
| writeQueue.resize(p.qos_priorities); |
| |
| dram->setCtrl(this, commandWindow); |
| |
| // perform a basic check of the write thresholds |
| if (p.write_low_thresh_perc >= p.write_high_thresh_perc) |
| fatal("Write buffer low threshold %d must be smaller than the " |
| "high threshold %d\n", p.write_low_thresh_perc, |
| p.write_high_thresh_perc); |
| if (p.disable_sanity_check) { |
| port.disableSanityCheck(); |
| } |
| } |
| |
| void |
| MemCtrl::init() |
| { |
| if (!port.isConnected()) { |
| fatal("MemCtrl %s is unconnected!\n", name()); |
| } else { |
| port.sendRangeChange(); |
| } |
| } |
| |
| void |
| MemCtrl::startup() |
| { |
| // remember the memory system mode of operation |
| isTimingMode = system()->isTimingMode(); |
| |
| if (isTimingMode) { |
| // shift the bus busy time sufficiently far ahead that we never |
| // have to worry about negative values when computing the time for |
| // the next request, this will add an insignificant bubble at the |
| // start of simulation |
| dram->nextBurstAt = curTick() + dram->commandOffset(); |
| } |
| } |
| |
| Tick |
| MemCtrl::recvAtomic(PacketPtr pkt) |
| { |
| if (!dram->getAddrRange().contains(pkt->getAddr())) { |
| panic("Can't handle address range for packet %s\n", pkt->print()); |
| } |
| |
| return recvAtomicLogic(pkt, dram); |
| } |
| |
| |
| Tick |
| MemCtrl::recvAtomicLogic(PacketPtr pkt, MemInterface* mem_intr) |
| { |
| DPRINTF(MemCtrl, "recvAtomic: %s 0x%x\n", |
| pkt->cmdString(), pkt->getAddr()); |
| |
| panic_if(pkt->cacheResponding(), "Should not see packets where cache " |
| "is responding"); |
| |
| // do the actual memory access and turn the packet into a response |
| mem_intr->access(pkt); |
| |
| if (pkt->hasData()) { |
| // this value is not supposed to be accurate, just enough to |
| // keep things going, mimic a closed page |
| // also this latency can't be 0 |
| return mem_intr->accessLatency(); |
| } |
| |
| return 0; |
| } |
| |
| Tick |
| MemCtrl::recvAtomicBackdoor(PacketPtr pkt, MemBackdoorPtr &backdoor) |
| { |
| Tick latency = recvAtomic(pkt); |
| dram->getBackdoor(backdoor); |
| return latency; |
| } |
| |
| bool |
| MemCtrl::readQueueFull(unsigned int neededEntries) const |
| { |
| DPRINTF(MemCtrl, |
| "Read queue limit %d, current size %d, entries needed %d\n", |
| readBufferSize, totalReadQueueSize + respQueue.size(), |
| neededEntries); |
| |
| auto rdsize_new = totalReadQueueSize + respQueue.size() + neededEntries; |
| return rdsize_new > readBufferSize; |
| } |
| |
| bool |
| MemCtrl::writeQueueFull(unsigned int neededEntries) const |
| { |
| DPRINTF(MemCtrl, |
| "Write queue limit %d, current size %d, entries needed %d\n", |
| writeBufferSize, totalWriteQueueSize, neededEntries); |
| |
| auto wrsize_new = (totalWriteQueueSize + neededEntries); |
| return wrsize_new > writeBufferSize; |
| } |
| |
| bool |
| MemCtrl::addToReadQueue(PacketPtr pkt, |
| unsigned int pkt_count, MemInterface* mem_intr) |
| { |
| // only add to the read queue here. whenever the request is |
| // eventually done, set the readyTime, and call schedule() |
| assert(!pkt->isWrite()); |
| |
| assert(pkt_count != 0); |
| |
| // if the request size is larger than burst size, the pkt is split into |
| // multiple packets |
| // Note if the pkt starting address is not aligened to burst size, the |
| // address of first packet is kept unaliged. Subsequent packets |
| // are aligned to burst size boundaries. This is to ensure we accurately |
| // check read packets against packets in write queue. |
| const Addr base_addr = pkt->getAddr(); |
| Addr addr = base_addr; |
| unsigned pktsServicedByWrQ = 0; |
| BurstHelper* burst_helper = NULL; |
| |
| uint32_t burst_size = mem_intr->bytesPerBurst(); |
| |
| for (int cnt = 0; cnt < pkt_count; ++cnt) { |
| unsigned size = std::min((addr | (burst_size - 1)) + 1, |
| base_addr + pkt->getSize()) - addr; |
| stats.readPktSize[ceilLog2(size)]++; |
| stats.readBursts++; |
| stats.requestorReadAccesses[pkt->requestorId()]++; |
| |
| // First check write buffer to see if the data is already at |
| // the controller |
| bool foundInWrQ = false; |
| Addr burst_addr = burstAlign(addr, mem_intr); |
| // if the burst address is not present then there is no need |
| // looking any further |
| if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { |
| for (const auto& vec : writeQueue) { |
| for (const auto& p : vec) { |
| // check if the read is subsumed in the write queue |
| // packet we are looking at |
| if (p->addr <= addr && |
| ((addr + size) <= (p->addr + p->size))) { |
| |
| foundInWrQ = true; |
| stats.servicedByWrQ++; |
| pktsServicedByWrQ++; |
| DPRINTF(MemCtrl, |
| "Read to addr %#x with size %d serviced by " |
| "write queue\n", |
| addr, size); |
| stats.bytesReadWrQ += burst_size; |
| break; |
| } |
| } |
| } |
| } |
| |
| // If not found in the write q, make a memory packet and |
| // push it onto the read queue |
| if (!foundInWrQ) { |
| |
| // Make the burst helper for split packets |
| if (pkt_count > 1 && burst_helper == NULL) { |
| DPRINTF(MemCtrl, "Read to addr %#x translates to %d " |
| "memory requests\n", pkt->getAddr(), pkt_count); |
| burst_helper = new BurstHelper(pkt_count); |
| } |
| |
| MemPacket* mem_pkt; |
| mem_pkt = mem_intr->decodePacket(pkt, addr, size, true, |
| mem_intr->pseudoChannel); |
| |
| // Increment read entries of the rank (dram) |
| // Increment count to trigger issue of non-deterministic read (nvm) |
| mem_intr->setupRank(mem_pkt->rank, true); |
| // Default readyTime to Max; will be reset once read is issued |
| mem_pkt->readyTime = MaxTick; |
| mem_pkt->burstHelper = burst_helper; |
| |
| assert(!readQueueFull(1)); |
| stats.rdQLenPdf[totalReadQueueSize + respQueue.size()]++; |
| |
| DPRINTF(MemCtrl, "Adding to read queue\n"); |
| |
| readQueue[mem_pkt->qosValue()].push_back(mem_pkt); |
| |
| // log packet |
| logRequest(MemCtrl::READ, pkt->requestorId(), |
| pkt->qosValue(), mem_pkt->addr, 1); |
| |
| // Update stats |
| stats.avgRdQLen = totalReadQueueSize + respQueue.size(); |
| } |
| |
| // Starting address of next memory pkt (aligned to burst boundary) |
| addr = (addr | (burst_size - 1)) + 1; |
| } |
| |
| // If all packets are serviced by write queue, we send the repsonse back |
| if (pktsServicedByWrQ == pkt_count) { |
| accessAndRespond(pkt, frontendLatency, mem_intr); |
| return true; |
| } |
| |
| // Update how many split packets are serviced by write queue |
| if (burst_helper != NULL) |
| burst_helper->burstsServiced = pktsServicedByWrQ; |
| |
| // not all/any packets serviced by the write queue |
| return false; |
| } |
| |
| void |
| MemCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pkt_count, |
| MemInterface* mem_intr) |
| { |
| // only add to the write queue here. whenever the request is |
| // eventually done, set the readyTime, and call schedule() |
| assert(pkt->isWrite()); |
| |
| // if the request size is larger than burst size, the pkt is split into |
| // multiple packets |
| const Addr base_addr = pkt->getAddr(); |
| Addr addr = base_addr; |
| uint32_t burst_size = mem_intr->bytesPerBurst(); |
| |
| for (int cnt = 0; cnt < pkt_count; ++cnt) { |
| unsigned size = std::min((addr | (burst_size - 1)) + 1, |
| base_addr + pkt->getSize()) - addr; |
| stats.writePktSize[ceilLog2(size)]++; |
| stats.writeBursts++; |
| stats.requestorWriteAccesses[pkt->requestorId()]++; |
| |
| // see if we can merge with an existing item in the write |
| // queue and keep track of whether we have merged or not |
| bool merged = isInWriteQueue.find(burstAlign(addr, mem_intr)) != |
| isInWriteQueue.end(); |
| |
| // if the item was not merged we need to create a new write |
| // and enqueue it |
| if (!merged) { |
| MemPacket* mem_pkt; |
| mem_pkt = mem_intr->decodePacket(pkt, addr, size, false, |
| mem_intr->pseudoChannel); |
| // Default readyTime to Max if nvm interface; |
| //will be reset once read is issued |
| mem_pkt->readyTime = MaxTick; |
| |
| mem_intr->setupRank(mem_pkt->rank, false); |
| |
| assert(totalWriteQueueSize < writeBufferSize); |
| stats.wrQLenPdf[totalWriteQueueSize]++; |
| |
| DPRINTF(MemCtrl, "Adding to write queue\n"); |
| |
| writeQueue[mem_pkt->qosValue()].push_back(mem_pkt); |
| isInWriteQueue.insert(burstAlign(addr, mem_intr)); |
| |
| // log packet |
| logRequest(MemCtrl::WRITE, pkt->requestorId(), |
| pkt->qosValue(), mem_pkt->addr, 1); |
| |
| assert(totalWriteQueueSize == isInWriteQueue.size()); |
| |
| // Update stats |
| stats.avgWrQLen = totalWriteQueueSize; |
| |
| } else { |
| DPRINTF(MemCtrl, |
| "Merging write burst with existing queue entry\n"); |
| |
| // keep track of the fact that this burst effectively |
| // disappeared as it was merged with an existing one |
| stats.mergedWrBursts++; |
| } |
| |
| // Starting address of next memory pkt (aligned to burst_size boundary) |
| addr = (addr | (burst_size - 1)) + 1; |
| } |
| |
| // we do not wait for the writes to be send to the actual memory, |
| // but instead take responsibility for the consistency here and |
| // snoop the write queue for any upcoming reads |
| // @todo, if a pkt size is larger than burst size, we might need a |
| // different front end latency |
| accessAndRespond(pkt, frontendLatency, mem_intr); |
| } |
| |
| void |
| MemCtrl::printQs() const |
| { |
| #if TRACING_ON |
| DPRINTF(MemCtrl, "===READ QUEUE===\n\n"); |
| for (const auto& queue : readQueue) { |
| for (const auto& packet : queue) { |
| DPRINTF(MemCtrl, "Read %#x\n", packet->addr); |
| } |
| } |
| |
| DPRINTF(MemCtrl, "\n===RESP QUEUE===\n\n"); |
| for (const auto& packet : respQueue) { |
| DPRINTF(MemCtrl, "Response %#x\n", packet->addr); |
| } |
| |
| DPRINTF(MemCtrl, "\n===WRITE QUEUE===\n\n"); |
| for (const auto& queue : writeQueue) { |
| for (const auto& packet : queue) { |
| DPRINTF(MemCtrl, "Write %#x\n", packet->addr); |
| } |
| } |
| #endif // TRACING_ON |
| } |
| |
| bool |
| MemCtrl::recvTimingReq(PacketPtr pkt) |
| { |
| // This is where we enter from the outside world |
| DPRINTF(MemCtrl, "recvTimingReq: request %s addr %#x size %d\n", |
| pkt->cmdString(), pkt->getAddr(), pkt->getSize()); |
| |
| panic_if(pkt->cacheResponding(), "Should not see packets where cache " |
| "is responding"); |
| |
| panic_if(!(pkt->isRead() || pkt->isWrite()), |
| "Should only see read and writes at memory controller\n"); |
| |
| // Calc avg gap between requests |
| if (prevArrival != 0) { |
| stats.totGap += curTick() - prevArrival; |
| } |
| prevArrival = curTick(); |
| |
| panic_if(!(dram->getAddrRange().contains(pkt->getAddr())), |
| "Can't handle address range for packet %s\n", pkt->print()); |
| |
| // Find out how many memory packets a pkt translates to |
| // If the burst size is equal or larger than the pkt size, then a pkt |
| // translates to only one memory packet. Otherwise, a pkt translates to |
| // multiple memory packets |
| unsigned size = pkt->getSize(); |
| uint32_t burst_size = dram->bytesPerBurst(); |
| |
| unsigned offset = pkt->getAddr() & (burst_size - 1); |
| unsigned int pkt_count = divCeil(offset + size, burst_size); |
| |
| // run the QoS scheduler and assign a QoS priority value to the packet |
| qosSchedule( { &readQueue, &writeQueue }, burst_size, pkt); |
| |
| // check local buffers and do not accept if full |
| if (pkt->isWrite()) { |
| assert(size != 0); |
| if (writeQueueFull(pkt_count)) { |
| DPRINTF(MemCtrl, "Write queue full, not accepting\n"); |
| // remember that we have to retry this port |
| retryWrReq = true; |
| stats.numWrRetry++; |
| return false; |
| } else { |
| addToWriteQueue(pkt, pkt_count, dram); |
| // If we are not already scheduled to get a request out of the |
| // queue, do so now |
| if (!nextReqEvent.scheduled()) { |
| DPRINTF(MemCtrl, "Request scheduled immediately\n"); |
| schedule(nextReqEvent, curTick()); |
| } |
| stats.writeReqs++; |
| stats.bytesWrittenSys += size; |
| } |
| } else { |
| assert(pkt->isRead()); |
| assert(size != 0); |
| if (readQueueFull(pkt_count)) { |
| DPRINTF(MemCtrl, "Read queue full, not accepting\n"); |
| // remember that we have to retry this port |
| retryRdReq = true; |
| stats.numRdRetry++; |
| return false; |
| } else { |
| if (!addToReadQueue(pkt, pkt_count, dram)) { |
| // If we are not already scheduled to get a request out of the |
| // queue, do so now |
| if (!nextReqEvent.scheduled()) { |
| DPRINTF(MemCtrl, "Request scheduled immediately\n"); |
| schedule(nextReqEvent, curTick()); |
| } |
| } |
| stats.readReqs++; |
| stats.bytesReadSys += size; |
| } |
| } |
| |
| return true; |
| } |
| |
| void |
| MemCtrl::processRespondEvent(MemInterface* mem_intr, |
| MemPacketQueue& queue, |
| EventFunctionWrapper& resp_event, |
| bool& retry_rd_req) |
| { |
| |
| DPRINTF(MemCtrl, |
| "processRespondEvent(): Some req has reached its readyTime\n"); |
| |
| MemPacket* mem_pkt = queue.front(); |
| |
| // media specific checks and functions when read response is complete |
| // DRAM only |
| mem_intr->respondEvent(mem_pkt->rank); |
| |
| if (mem_pkt->burstHelper) { |
| // it is a split packet |
| mem_pkt->burstHelper->burstsServiced++; |
| if (mem_pkt->burstHelper->burstsServiced == |
| mem_pkt->burstHelper->burstCount) { |
| // we have now serviced all children packets of a system packet |
| // so we can now respond to the requestor |
| // @todo we probably want to have a different front end and back |
| // end latency for split packets |
| accessAndRespond(mem_pkt->pkt, frontendLatency + backendLatency, |
| mem_intr); |
| delete mem_pkt->burstHelper; |
| mem_pkt->burstHelper = NULL; |
| } |
| } else { |
| // it is not a split packet |
| accessAndRespond(mem_pkt->pkt, frontendLatency + backendLatency, |
| mem_intr); |
| } |
| |
| queue.pop_front(); |
| |
| if (!queue.empty()) { |
| assert(queue.front()->readyTime >= curTick()); |
| assert(!resp_event.scheduled()); |
| schedule(resp_event, queue.front()->readyTime); |
| } else { |
| // if there is nothing left in any queue, signal a drain |
| if (drainState() == DrainState::Draining && |
| !totalWriteQueueSize && !totalReadQueueSize && |
| allIntfDrained()) { |
| |
| DPRINTF(Drain, "Controller done draining\n"); |
| signalDrainDone(); |
| } else { |
| // check the refresh state and kick the refresh event loop |
| // into action again if banks already closed and just waiting |
| // for read to complete |
| // DRAM only |
| mem_intr->checkRefreshState(mem_pkt->rank); |
| } |
| } |
| |
| delete mem_pkt; |
| |
| // We have made a location in the queue available at this point, |
| // so if there is a read that was forced to wait, retry now |
| if (retry_rd_req) { |
| retry_rd_req = false; |
| port.sendRetryReq(); |
| } |
| } |
| |
| MemPacketQueue::iterator |
| MemCtrl::chooseNext(MemPacketQueue& queue, Tick extra_col_delay, |
| MemInterface* mem_intr) |
| { |
| // This method does the arbitration between requests. |
| |
| MemPacketQueue::iterator ret = queue.end(); |
| |
| if (!queue.empty()) { |
| if (queue.size() == 1) { |
| // available rank corresponds to state refresh idle |
| MemPacket* mem_pkt = *(queue.begin()); |
| if (mem_pkt->pseudoChannel != mem_intr->pseudoChannel) { |
| return ret; |
| } |
| if (packetReady(mem_pkt, mem_intr)) { |
| ret = queue.begin(); |
| DPRINTF(MemCtrl, "Single request, going to a free rank\n"); |
| } else { |
| DPRINTF(MemCtrl, "Single request, going to a busy rank\n"); |
| } |
| } else if (memSchedPolicy == enums::fcfs) { |
| // check if there is a packet going to a free rank |
| for (auto i = queue.begin(); i != queue.end(); ++i) { |
| MemPacket* mem_pkt = *i; |
| if (packetReady(mem_pkt, mem_intr)) { |
| ret = i; |
| break; |
| } |
| } |
| } else if (memSchedPolicy == enums::frfcfs) { |
| Tick col_allowed_at; |
| std::tie(ret, col_allowed_at) |
| = chooseNextFRFCFS(queue, extra_col_delay, mem_intr); |
| } else { |
| panic("No scheduling policy chosen\n"); |
| } |
| } |
| return ret; |
| } |
| |
| std::pair<MemPacketQueue::iterator, Tick> |
| MemCtrl::chooseNextFRFCFS(MemPacketQueue& queue, Tick extra_col_delay, |
| MemInterface* mem_intr) |
| { |
| auto selected_pkt_it = queue.end(); |
| Tick col_allowed_at = MaxTick; |
| |
| // time we need to issue a column command to be seamless |
| const Tick min_col_at = std::max(mem_intr->nextBurstAt + extra_col_delay, |
| curTick()); |
| |
| std::tie(selected_pkt_it, col_allowed_at) = |
| mem_intr->chooseNextFRFCFS(queue, min_col_at); |
| |
| if (selected_pkt_it == queue.end()) { |
| DPRINTF(MemCtrl, "%s no available packets found\n", __func__); |
| } |
| |
| return std::make_pair(selected_pkt_it, col_allowed_at); |
| } |
| |
| void |
| MemCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency, |
| MemInterface* mem_intr) |
| { |
| DPRINTF(MemCtrl, "Responding to Address %#x.. \n", pkt->getAddr()); |
| |
| bool needsResponse = pkt->needsResponse(); |
| // do the actual memory access which also turns the packet into a |
| // response |
| panic_if(!mem_intr->getAddrRange().contains(pkt->getAddr()), |
| "Can't handle address range for packet %s\n", pkt->print()); |
| mem_intr->access(pkt); |
| |
| // turn packet around to go back to requestor if response expected |
| if (needsResponse) { |
| // access already turned the packet into a response |
| assert(pkt->isResponse()); |
| // response_time consumes the static latency and is charged also |
| // with headerDelay that takes into account the delay provided by |
| // the xbar and also the payloadDelay that takes into account the |
| // number of data beats. |
| Tick response_time = curTick() + static_latency + pkt->headerDelay + |
| pkt->payloadDelay; |
| // Here we reset the timing of the packet before sending it out. |
| pkt->headerDelay = pkt->payloadDelay = 0; |
| |
| // queue the packet in the response queue to be sent out after |
| // the static latency has passed |
| port.schedTimingResp(pkt, response_time); |
| } else { |
| // @todo the packet is going to be deleted, and the MemPacket |
| // is still having a pointer to it |
| pendingDelete.reset(pkt); |
| } |
| |
| DPRINTF(MemCtrl, "Done\n"); |
| |
| return; |
| } |
| |
| void |
| MemCtrl::pruneBurstTick() |
| { |
| auto it = burstTicks.begin(); |
| while (it != burstTicks.end()) { |
| auto current_it = it++; |
| if (curTick() > *current_it) { |
| DPRINTF(MemCtrl, "Removing burstTick for %d\n", *current_it); |
| burstTicks.erase(current_it); |
| } |
| } |
| } |
| |
| Tick |
| MemCtrl::getBurstWindow(Tick cmd_tick) |
| { |
| // get tick aligned to burst window |
| Tick burst_offset = cmd_tick % commandWindow; |
| return (cmd_tick - burst_offset); |
| } |
| |
| Tick |
| MemCtrl::verifySingleCmd(Tick cmd_tick, Tick max_cmds_per_burst, bool row_cmd) |
| { |
| // start with assumption that there is no contention on command bus |
| Tick cmd_at = cmd_tick; |
| |
| // get tick aligned to burst window |
| Tick burst_tick = getBurstWindow(cmd_tick); |
| |
| // verify that we have command bandwidth to issue the command |
| // if not, iterate over next window(s) until slot found |
| while (burstTicks.count(burst_tick) >= max_cmds_per_burst) { |
| DPRINTF(MemCtrl, "Contention found on command bus at %d\n", |
| burst_tick); |
| burst_tick += commandWindow; |
| cmd_at = burst_tick; |
| } |
| |
| // add command into burst window and return corresponding Tick |
| burstTicks.insert(burst_tick); |
| return cmd_at; |
| } |
| |
| Tick |
| MemCtrl::verifyMultiCmd(Tick cmd_tick, Tick max_cmds_per_burst, |
| Tick max_multi_cmd_split) |
| { |
| // start with assumption that there is no contention on command bus |
| Tick cmd_at = cmd_tick; |
| |
| // get tick aligned to burst window |
| Tick burst_tick = getBurstWindow(cmd_tick); |
| |
| // Command timing requirements are from 2nd command |
| // Start with assumption that 2nd command will issue at cmd_at and |
| // find prior slot for 1st command to issue |
| // Given a maximum latency of max_multi_cmd_split between the commands, |
| // find the burst at the maximum latency prior to cmd_at |
| Tick burst_offset = 0; |
| Tick first_cmd_offset = cmd_tick % commandWindow; |
| while (max_multi_cmd_split > (first_cmd_offset + burst_offset)) { |
| burst_offset += commandWindow; |
| } |
| // get the earliest burst aligned address for first command |
| // ensure that the time does not go negative |
| Tick first_cmd_tick = burst_tick - std::min(burst_offset, burst_tick); |
| |
| // Can required commands issue? |
| bool first_can_issue = false; |
| bool second_can_issue = false; |
| // verify that we have command bandwidth to issue the command(s) |
| while (!first_can_issue || !second_can_issue) { |
| bool same_burst = (burst_tick == first_cmd_tick); |
| auto first_cmd_count = burstTicks.count(first_cmd_tick); |
| auto second_cmd_count = same_burst ? first_cmd_count + 1 : |
| burstTicks.count(burst_tick); |
| |
| first_can_issue = first_cmd_count < max_cmds_per_burst; |
| second_can_issue = second_cmd_count < max_cmds_per_burst; |
| |
| if (!second_can_issue) { |
| DPRINTF(MemCtrl, "Contention (cmd2) found on command bus at %d\n", |
| burst_tick); |
| burst_tick += commandWindow; |
| cmd_at = burst_tick; |
| } |
| |
| // Verify max_multi_cmd_split isn't violated when command 2 is shifted |
| // If commands initially were issued in same burst, they are |
| // now in consecutive bursts and can still issue B2B |
| bool gap_violated = !same_burst && |
| ((burst_tick - first_cmd_tick) > max_multi_cmd_split); |
| |
| if (!first_can_issue || (!second_can_issue && gap_violated)) { |
| DPRINTF(MemCtrl, "Contention (cmd1) found on command bus at %d\n", |
| first_cmd_tick); |
| first_cmd_tick += commandWindow; |
| } |
| } |
| |
| // Add command to burstTicks |
| burstTicks.insert(burst_tick); |
| burstTicks.insert(first_cmd_tick); |
| |
| return cmd_at; |
| } |
| |
| bool |
| MemCtrl::inReadBusState(bool next_state) const |
| { |
| // check the bus state |
| if (next_state) { |
| // use busStateNext to get the state that will be used |
| // for the next burst |
| return (busStateNext == MemCtrl::READ); |
| } else { |
| return (busState == MemCtrl::READ); |
| } |
| } |
| |
| bool |
| MemCtrl::inWriteBusState(bool next_state) const |
| { |
| // check the bus state |
| if (next_state) { |
| // use busStateNext to get the state that will be used |
| // for the next burst |
| return (busStateNext == MemCtrl::WRITE); |
| } else { |
| return (busState == MemCtrl::WRITE); |
| } |
| } |
| |
| Tick |
| MemCtrl::doBurstAccess(MemPacket* mem_pkt, MemInterface* mem_intr) |
| { |
| // first clean up the burstTick set, removing old entries |
| // before adding new entries for next burst |
| pruneBurstTick(); |
| |
| // When was command issued? |
| Tick cmd_at; |
| |
| // Issue the next burst and update bus state to reflect |
| // when previous command was issued |
| std::vector<MemPacketQueue>& queue = selQueue(mem_pkt->isRead()); |
| std::tie(cmd_at, mem_intr->nextBurstAt) = |
| mem_intr->doBurstAccess(mem_pkt, mem_intr->nextBurstAt, queue); |
| |
| DPRINTF(MemCtrl, "Access to %#x, ready at %lld next burst at %lld.\n", |
| mem_pkt->addr, mem_pkt->readyTime, mem_intr->nextBurstAt); |
| |
| // Update the minimum timing between the requests, this is a |
| // conservative estimate of when we have to schedule the next |
| // request to not introduce any unecessary bubbles. In most cases |
| // we will wake up sooner than we have to. |
| mem_intr->nextReqTime = mem_intr->nextBurstAt - mem_intr->commandOffset(); |
| |
| // Update the common bus stats |
| if (mem_pkt->isRead()) { |
| ++readsThisTime; |
| // Update latency stats |
| stats.requestorReadTotalLat[mem_pkt->requestorId()] += |
| mem_pkt->readyTime - mem_pkt->entryTime; |
| stats.requestorReadBytes[mem_pkt->requestorId()] += mem_pkt->size; |
| } else { |
| ++writesThisTime; |
| stats.requestorWriteBytes[mem_pkt->requestorId()] += mem_pkt->size; |
| stats.requestorWriteTotalLat[mem_pkt->requestorId()] += |
| mem_pkt->readyTime - mem_pkt->entryTime; |
| } |
| |
| return cmd_at; |
| } |
| |
| bool |
| MemCtrl::memBusy(MemInterface* mem_intr) { |
| |
| // check ranks for refresh/wakeup - uses busStateNext, so done after |
| // turnaround decisions |
| // Default to busy status and update based on interface specifics |
| // Default state of unused interface is 'true' |
| bool mem_busy = true; |
| bool all_writes_nvm = mem_intr->numWritesQueued == totalWriteQueueSize; |
| bool read_queue_empty = totalReadQueueSize == 0; |
| mem_busy = mem_intr->isBusy(read_queue_empty, all_writes_nvm); |
| if (mem_busy) { |
| // if all ranks are refreshing wait for them to finish |
| // and stall this state machine without taking any further |
| // action, and do not schedule a new nextReqEvent |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| bool |
| MemCtrl::nvmWriteBlock(MemInterface* mem_intr) { |
| |
| bool all_writes_nvm = mem_intr->numWritesQueued == totalWriteQueueSize; |
| return (mem_intr->writeRespQueueFull() && all_writes_nvm); |
| } |
| |
| void |
| MemCtrl::nonDetermReads(MemInterface* mem_intr) { |
| |
| for (auto queue = readQueue.rbegin(); |
| queue != readQueue.rend(); ++queue) { |
| // select non-deterministic NVM read to issue |
| // assume that we have the command bandwidth to issue this along |
| // with additional RD/WR burst with needed bank operations |
| if (mem_intr->readsWaitingToIssue()) { |
| // select non-deterministic NVM read to issue |
| mem_intr->chooseRead(*queue); |
| } |
| } |
| } |
| |
| void |
| MemCtrl::processNextReqEvent(MemInterface* mem_intr, |
| MemPacketQueue& resp_queue, |
| EventFunctionWrapper& resp_event, |
| EventFunctionWrapper& next_req_event, |
| bool& retry_wr_req) { |
| // transition is handled by QoS algorithm if enabled |
| if (turnPolicy) { |
| // select bus state - only done if QoS algorithms are in use |
| busStateNext = selectNextBusState(); |
| } |
| |
| // detect bus state change |
| bool switched_cmd_type = (busState != busStateNext); |
| // record stats |
| recordTurnaroundStats(); |
| |
| DPRINTF(MemCtrl, "QoS Turnarounds selected state %s %s\n", |
| (busState==MemCtrl::READ)?"READ":"WRITE", |
| switched_cmd_type?"[turnaround triggered]":""); |
| |
| if (switched_cmd_type) { |
| if (busState == MemCtrl::READ) { |
| DPRINTF(MemCtrl, |
| "Switching to writes after %d reads with %d reads " |
| "waiting\n", readsThisTime, totalReadQueueSize); |
| stats.rdPerTurnAround.sample(readsThisTime); |
| readsThisTime = 0; |
| } else { |
| DPRINTF(MemCtrl, |
| "Switching to reads after %d writes with %d writes " |
| "waiting\n", writesThisTime, totalWriteQueueSize); |
| stats.wrPerTurnAround.sample(writesThisTime); |
| writesThisTime = 0; |
| } |
| } |
| |
| // updates current state |
| busState = busStateNext; |
| |
| nonDetermReads(mem_intr); |
| |
| if (memBusy(mem_intr)) { |
| return; |
| } |
| |
| // when we get here it is either a read or a write |
| if (busState == READ) { |
| |
| // track if we should switch or not |
| bool switch_to_writes = false; |
| |
| if (totalReadQueueSize == 0) { |
| // In the case there is no read request to go next, |
| // trigger writes if we have passed the low threshold (or |
| // if we are draining) |
| if (!(totalWriteQueueSize == 0) && |
| (drainState() == DrainState::Draining || |
| totalWriteQueueSize > writeLowThreshold)) { |
| |
| DPRINTF(MemCtrl, |
| "Switching to writes due to read queue empty\n"); |
| switch_to_writes = true; |
| } else { |
| // check if we are drained |
| // not done draining until in PWR_IDLE state |
| // ensuring all banks are closed and |
| // have exited low power states |
| if (drainState() == DrainState::Draining && |
| respQEmpty() && allIntfDrained()) { |
| |
| DPRINTF(Drain, "MemCtrl controller done draining\n"); |
| signalDrainDone(); |
| } |
| |
| // nothing to do, not even any point in scheduling an |
| // event for the next request |
| return; |
| } |
| } else { |
| |
| bool read_found = false; |
| MemPacketQueue::iterator to_read; |
| uint8_t prio = numPriorities(); |
| |
| for (auto queue = readQueue.rbegin(); |
| queue != readQueue.rend(); ++queue) { |
| |
| prio--; |
| |
| DPRINTF(QOS, |
| "Checking READ queue [%d] priority [%d elements]\n", |
| prio, queue->size()); |
| |
| // Figure out which read request goes next |
| // If we are changing command type, incorporate the minimum |
| // bus turnaround delay which will be rank to rank delay |
| to_read = chooseNext((*queue), switched_cmd_type ? |
| minWriteToReadDataGap() : 0, mem_intr); |
| |
| if (to_read != queue->end()) { |
| // candidate read found |
| read_found = true; |
| break; |
| } |
| } |
| |
| // if no read to an available rank is found then return |
| // at this point. There could be writes to the available ranks |
| // which are above the required threshold. However, to |
| // avoid adding more complexity to the code, return and wait |
| // for a refresh event to kick things into action again. |
| if (!read_found) { |
| DPRINTF(MemCtrl, "No Reads Found - exiting\n"); |
| return; |
| } |
| |
| auto mem_pkt = *to_read; |
| |
| Tick cmd_at = doBurstAccess(mem_pkt, mem_intr); |
| |
| DPRINTF(MemCtrl, |
| "Command for %#x, issued at %lld.\n", mem_pkt->addr, cmd_at); |
| |
| // sanity check |
| assert(pktSizeCheck(mem_pkt, mem_intr)); |
| assert(mem_pkt->readyTime >= curTick()); |
| |
| // log the response |
| logResponse(MemCtrl::READ, (*to_read)->requestorId(), |
| mem_pkt->qosValue(), mem_pkt->getAddr(), 1, |
| mem_pkt->readyTime - mem_pkt->entryTime); |
| |
| |
| // Insert into response queue. It will be sent back to the |
| // requestor at its readyTime |
| if (resp_queue.empty()) { |
| assert(!resp_event.scheduled()); |
| schedule(resp_event, mem_pkt->readyTime); |
| } else { |
| assert(resp_queue.back()->readyTime <= mem_pkt->readyTime); |
| assert(resp_event.scheduled()); |
| } |
| |
| resp_queue.push_back(mem_pkt); |
| |
| // we have so many writes that we have to transition |
| // don't transition if the writeRespQueue is full and |
| // there are no other writes that can issue |
| // Also ensure that we've issued a minimum defined number |
| // of reads before switching, or have emptied the readQ |
| if ((totalWriteQueueSize > writeHighThreshold) && |
| (readsThisTime >= minReadsPerSwitch || totalReadQueueSize == 0) |
| && !(nvmWriteBlock(mem_intr))) { |
| switch_to_writes = true; |
| } |
| |
| // remove the request from the queue |
| // the iterator is no longer valid . |
| readQueue[mem_pkt->qosValue()].erase(to_read); |
| } |
| |
| // switching to writes, either because the read queue is empty |
| // and the writes have passed the low threshold (or we are |
| // draining), or because the writes hit the hight threshold |
| if (switch_to_writes) { |
| // transition to writing |
| busStateNext = WRITE; |
| } |
| } else { |
| |
| bool write_found = false; |
| MemPacketQueue::iterator to_write; |
| uint8_t prio = numPriorities(); |
| |
| for (auto queue = writeQueue.rbegin(); |
| queue != writeQueue.rend(); ++queue) { |
| |
| prio--; |
| |
| DPRINTF(QOS, |
| "Checking WRITE queue [%d] priority [%d elements]\n", |
| prio, queue->size()); |
| |
| // If we are changing command type, incorporate the minimum |
| // bus turnaround delay |
| to_write = chooseNext((*queue), |
| switched_cmd_type ? minReadToWriteDataGap() : 0, mem_intr); |
| |
| if (to_write != queue->end()) { |
| write_found = true; |
| break; |
| } |
| } |
| |
| // if there are no writes to a rank that is available to service |
| // requests (i.e. rank is in refresh idle state) are found then |
| // return. There could be reads to the available ranks. However, to |
| // avoid adding more complexity to the code, return at this point and |
| // wait for a refresh event to kick things into action again. |
| if (!write_found) { |
| DPRINTF(MemCtrl, "No Writes Found - exiting\n"); |
| return; |
| } |
| |
| auto mem_pkt = *to_write; |
| |
| // sanity check |
| assert(pktSizeCheck(mem_pkt, mem_intr)); |
| |
| Tick cmd_at = doBurstAccess(mem_pkt, mem_intr); |
| DPRINTF(MemCtrl, |
| "Command for %#x, issued at %lld.\n", mem_pkt->addr, cmd_at); |
| |
| isInWriteQueue.erase(burstAlign(mem_pkt->addr, mem_intr)); |
| |
| // log the response |
| logResponse(MemCtrl::WRITE, mem_pkt->requestorId(), |
| mem_pkt->qosValue(), mem_pkt->getAddr(), 1, |
| mem_pkt->readyTime - mem_pkt->entryTime); |
| |
| |
| // remove the request from the queue - the iterator is no longer valid |
| writeQueue[mem_pkt->qosValue()].erase(to_write); |
| |
| delete mem_pkt; |
| |
| // If we emptied the write queue, or got sufficiently below the |
| // threshold (using the minWritesPerSwitch as the hysteresis) and |
| // are not draining, or we have reads waiting and have done enough |
| // writes, then switch to reads. |
| // If we are interfacing to NVM and have filled the writeRespQueue, |
| // with only NVM writes in Q, then switch to reads |
| bool below_threshold = |
| totalWriteQueueSize + minWritesPerSwitch < writeLowThreshold; |
| |
| if (totalWriteQueueSize == 0 || |
| (below_threshold && drainState() != DrainState::Draining) || |
| (totalReadQueueSize && writesThisTime >= minWritesPerSwitch) || |
| (totalReadQueueSize && (nvmWriteBlock(mem_intr)))) { |
| |
| // turn the bus back around for reads again |
| busStateNext = MemCtrl::READ; |
| |
| // note that the we switch back to reads also in the idle |
| // case, which eventually will check for any draining and |
| // also pause any further scheduling if there is really |
| // nothing to do |
| } |
| } |
| // It is possible that a refresh to another rank kicks things back into |
| // action before reaching this point. |
| if (!next_req_event.scheduled()) |
| schedule(next_req_event, std::max(mem_intr->nextReqTime, curTick())); |
| |
| if (retry_wr_req && totalWriteQueueSize < writeBufferSize) { |
| retry_wr_req = false; |
| port.sendRetryReq(); |
| } |
| } |
| |
| bool |
| MemCtrl::packetReady(MemPacket* pkt, MemInterface* mem_intr) |
| { |
| return mem_intr->burstReady(pkt); |
| } |
| |
| Tick |
| MemCtrl::minReadToWriteDataGap() |
| { |
| return dram->minReadToWriteDataGap(); |
| } |
| |
| Tick |
| MemCtrl::minWriteToReadDataGap() |
| { |
| return dram->minWriteToReadDataGap(); |
| } |
| |
| Addr |
| MemCtrl::burstAlign(Addr addr, MemInterface* mem_intr) const |
| { |
| return (addr & ~(Addr(mem_intr->bytesPerBurst() - 1))); |
| } |
| |
| bool |
| MemCtrl::pktSizeCheck(MemPacket* mem_pkt, MemInterface* mem_intr) const |
| { |
| return (mem_pkt->size <= mem_intr->bytesPerBurst()); |
| } |
| |
| MemCtrl::CtrlStats::CtrlStats(MemCtrl &_ctrl) |
| : statistics::Group(&_ctrl), |
| ctrl(_ctrl), |
| |
| ADD_STAT(readReqs, statistics::units::Count::get(), |
| "Number of read requests accepted"), |
| ADD_STAT(writeReqs, statistics::units::Count::get(), |
| "Number of write requests accepted"), |
| |
| ADD_STAT(readBursts, statistics::units::Count::get(), |
| "Number of controller read bursts, including those serviced by " |
| "the write queue"), |
| ADD_STAT(writeBursts, statistics::units::Count::get(), |
| "Number of controller write bursts, including those merged in " |
| "the write queue"), |
| ADD_STAT(servicedByWrQ, statistics::units::Count::get(), |
| "Number of controller read bursts serviced by the write queue"), |
| ADD_STAT(mergedWrBursts, statistics::units::Count::get(), |
| "Number of controller write bursts merged with an existing one"), |
| |
| ADD_STAT(neitherReadNorWriteReqs, statistics::units::Count::get(), |
| "Number of requests that are neither read nor write"), |
| |
| ADD_STAT(avgRdQLen, statistics::units::Rate< |
| statistics::units::Count, statistics::units::Tick>::get(), |
| "Average read queue length when enqueuing"), |
| ADD_STAT(avgWrQLen, statistics::units::Rate< |
| statistics::units::Count, statistics::units::Tick>::get(), |
| "Average write queue length when enqueuing"), |
| |
| ADD_STAT(numRdRetry, statistics::units::Count::get(), |
| "Number of times read queue was full causing retry"), |
| ADD_STAT(numWrRetry, statistics::units::Count::get(), |
| "Number of times write queue was full causing retry"), |
| |
| ADD_STAT(readPktSize, statistics::units::Count::get(), |
| "Read request sizes (log2)"), |
| ADD_STAT(writePktSize, statistics::units::Count::get(), |
| "Write request sizes (log2)"), |
| |
| ADD_STAT(rdQLenPdf, statistics::units::Count::get(), |
| "What read queue length does an incoming req see"), |
| ADD_STAT(wrQLenPdf, statistics::units::Count::get(), |
| "What write queue length does an incoming req see"), |
| |
| ADD_STAT(rdPerTurnAround, statistics::units::Count::get(), |
| "Reads before turning the bus around for writes"), |
| ADD_STAT(wrPerTurnAround, statistics::units::Count::get(), |
| "Writes before turning the bus around for reads"), |
| |
| ADD_STAT(bytesReadWrQ, statistics::units::Byte::get(), |
| "Total number of bytes read from write queue"), |
| ADD_STAT(bytesReadSys, statistics::units::Byte::get(), |
| "Total read bytes from the system interface side"), |
| ADD_STAT(bytesWrittenSys, statistics::units::Byte::get(), |
| "Total written bytes from the system interface side"), |
| |
| ADD_STAT(avgRdBWSys, statistics::units::Rate< |
| statistics::units::Byte, statistics::units::Second>::get(), |
| "Average system read bandwidth in Byte/s"), |
| ADD_STAT(avgWrBWSys, statistics::units::Rate< |
| statistics::units::Byte, statistics::units::Second>::get(), |
| "Average system write bandwidth in Byte/s"), |
| |
| ADD_STAT(totGap, statistics::units::Tick::get(), |
| "Total gap between requests"), |
| ADD_STAT(avgGap, statistics::units::Rate< |
| statistics::units::Tick, statistics::units::Count>::get(), |
| "Average gap between requests"), |
| |
| ADD_STAT(requestorReadBytes, statistics::units::Byte::get(), |
| "Per-requestor bytes read from memory"), |
| ADD_STAT(requestorWriteBytes, statistics::units::Byte::get(), |
| "Per-requestor bytes write to memory"), |
| ADD_STAT(requestorReadRate, statistics::units::Rate< |
| statistics::units::Byte, statistics::units::Second>::get(), |
| "Per-requestor bytes read from memory rate"), |
| ADD_STAT(requestorWriteRate, statistics::units::Rate< |
| statistics::units::Byte, statistics::units::Second>::get(), |
| "Per-requestor bytes write to memory rate"), |
| ADD_STAT(requestorReadAccesses, statistics::units::Count::get(), |
| "Per-requestor read serviced memory accesses"), |
| ADD_STAT(requestorWriteAccesses, statistics::units::Count::get(), |
| "Per-requestor write serviced memory accesses"), |
| ADD_STAT(requestorReadTotalLat, statistics::units::Tick::get(), |
| "Per-requestor read total memory access latency"), |
| ADD_STAT(requestorWriteTotalLat, statistics::units::Tick::get(), |
| "Per-requestor write total memory access latency"), |
| ADD_STAT(requestorReadAvgLat, statistics::units::Rate< |
| statistics::units::Tick, statistics::units::Count>::get(), |
| "Per-requestor read average memory access latency"), |
| ADD_STAT(requestorWriteAvgLat, statistics::units::Rate< |
| statistics::units::Tick, statistics::units::Count>::get(), |
| "Per-requestor write average memory access latency") |
| { |
| } |
| |
| void |
| MemCtrl::CtrlStats::regStats() |
| { |
| using namespace statistics; |
| |
| assert(ctrl.system()); |
| const auto max_requestors = ctrl.system()->maxRequestors(); |
| |
| avgRdQLen.precision(2); |
| avgWrQLen.precision(2); |
| |
| readPktSize.init(ceilLog2(ctrl.system()->cacheLineSize()) + 1); |
| writePktSize.init(ceilLog2(ctrl.system()->cacheLineSize()) + 1); |
| |
| rdQLenPdf.init(ctrl.readBufferSize); |
| wrQLenPdf.init(ctrl.writeBufferSize); |
| |
| rdPerTurnAround |
| .init(ctrl.readBufferSize) |
| .flags(nozero); |
| wrPerTurnAround |
| .init(ctrl.writeBufferSize) |
| .flags(nozero); |
| |
| avgRdBWSys.precision(8); |
| avgWrBWSys.precision(8); |
| avgGap.precision(2); |
| |
| // per-requestor bytes read and written to memory |
| requestorReadBytes |
| .init(max_requestors) |
| .flags(nozero | nonan); |
| |
| requestorWriteBytes |
| .init(max_requestors) |
| .flags(nozero | nonan); |
| |
| // per-requestor bytes read and written to memory rate |
| requestorReadRate |
| .flags(nozero | nonan) |
| .precision(12); |
| |
| requestorReadAccesses |
| .init(max_requestors) |
| .flags(nozero); |
| |
| requestorWriteAccesses |
| .init(max_requestors) |
| .flags(nozero); |
| |
| requestorReadTotalLat |
| .init(max_requestors) |
| .flags(nozero | nonan); |
| |
| requestorReadAvgLat |
| .flags(nonan) |
| .precision(2); |
| |
| requestorWriteRate |
| .flags(nozero | nonan) |
| .precision(12); |
| |
| requestorWriteTotalLat |
| .init(max_requestors) |
| .flags(nozero | nonan); |
| |
| requestorWriteAvgLat |
| .flags(nonan) |
| .precision(2); |
| |
| for (int i = 0; i < max_requestors; i++) { |
| const std::string requestor = ctrl.system()->getRequestorName(i); |
| requestorReadBytes.subname(i, requestor); |
| requestorReadRate.subname(i, requestor); |
| requestorWriteBytes.subname(i, requestor); |
| requestorWriteRate.subname(i, requestor); |
| requestorReadAccesses.subname(i, requestor); |
| requestorWriteAccesses.subname(i, requestor); |
| requestorReadTotalLat.subname(i, requestor); |
| requestorReadAvgLat.subname(i, requestor); |
| requestorWriteTotalLat.subname(i, requestor); |
| requestorWriteAvgLat.subname(i, requestor); |
| } |
| |
| // Formula stats |
| avgRdBWSys = (bytesReadSys) / simSeconds; |
| avgWrBWSys = (bytesWrittenSys) / simSeconds; |
| |
| avgGap = totGap / (readReqs + writeReqs); |
| |
| requestorReadRate = requestorReadBytes / simSeconds; |
| requestorWriteRate = requestorWriteBytes / simSeconds; |
| requestorReadAvgLat = requestorReadTotalLat / requestorReadAccesses; |
| requestorWriteAvgLat = requestorWriteTotalLat / requestorWriteAccesses; |
| } |
| |
| void |
| MemCtrl::recvFunctional(PacketPtr pkt) |
| { |
| bool found = recvFunctionalLogic(pkt, dram); |
| |
| panic_if(!found, "Can't handle address range for packet %s\n", |
| pkt->print()); |
| } |
| |
| bool |
| MemCtrl::recvFunctionalLogic(PacketPtr pkt, MemInterface* mem_intr) |
| { |
| if (mem_intr->getAddrRange().contains(pkt->getAddr())) { |
| // rely on the abstract memory |
| mem_intr->functionalAccess(pkt); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| Port & |
| MemCtrl::getPort(const std::string &if_name, PortID idx) |
| { |
| if (if_name != "port") { |
| return qos::MemCtrl::getPort(if_name, idx); |
| } else { |
| return port; |
| } |
| } |
| |
| bool |
| MemCtrl::allIntfDrained() const |
| { |
| // DRAM: ensure dram is in power down and refresh IDLE states |
| // NVM: No outstanding NVM writes |
| // NVM: All other queues verified as needed with calling logic |
| return dram->allRanksDrained(); |
| } |
| |
| DrainState |
| MemCtrl::drain() |
| { |
| // if there is anything in any of our internal queues, keep track |
| // of that as well |
| if (!(!totalWriteQueueSize && !totalReadQueueSize && respQueue.empty() && |
| allIntfDrained())) { |
| |
| DPRINTF(Drain, "Memory controller not drained, write: %d, read: %d," |
| " resp: %d\n", totalWriteQueueSize, totalReadQueueSize, |
| respQueue.size()); |
| |
| // the only queue that is not drained automatically over time |
| // is the write queue, thus kick things into action if needed |
| if (!totalWriteQueueSize && !nextReqEvent.scheduled()) { |
| schedule(nextReqEvent, curTick()); |
| } |
| |
| dram->drainRanks(); |
| |
| return DrainState::Draining; |
| } else { |
| return DrainState::Drained; |
| } |
| } |
| |
| void |
| MemCtrl::drainResume() |
| { |
| if (!isTimingMode && system()->isTimingMode()) { |
| // if we switched to timing mode, kick things into action, |
| // and behave as if we restored from a checkpoint |
| startup(); |
| dram->startup(); |
| } else if (isTimingMode && !system()->isTimingMode()) { |
| // if we switch from timing mode, stop the refresh events to |
| // not cause issues with KVM |
| dram->suspend(); |
| } |
| |
| // update the mode |
| isTimingMode = system()->isTimingMode(); |
| } |
| |
| AddrRangeList |
| MemCtrl::getAddrRanges() |
| { |
| AddrRangeList range; |
| range.push_back(dram->getAddrRange()); |
| return range; |
| } |
| |
| MemCtrl::MemoryPort:: |
| MemoryPort(const std::string& name, MemCtrl& _ctrl) |
| : QueuedResponsePort(name, &_ctrl, queue), queue(_ctrl, *this, true), |
| ctrl(_ctrl) |
| { } |
| |
| AddrRangeList |
| MemCtrl::MemoryPort::getAddrRanges() const |
| { |
| return ctrl.getAddrRanges(); |
| } |
| |
| void |
| MemCtrl::MemoryPort::recvFunctional(PacketPtr pkt) |
| { |
| pkt->pushLabel(ctrl.name()); |
| |
| if (!queue.trySatisfyFunctional(pkt)) { |
| // Default implementation of SimpleTimingPort::recvFunctional() |
| // calls recvAtomic() and throws away the latency; we can save a |
| // little here by just not calculating the latency. |
| ctrl.recvFunctional(pkt); |
| } |
| |
| pkt->popLabel(); |
| } |
| |
| Tick |
| MemCtrl::MemoryPort::recvAtomic(PacketPtr pkt) |
| { |
| return ctrl.recvAtomic(pkt); |
| } |
| |
| Tick |
| MemCtrl::MemoryPort::recvAtomicBackdoor( |
| PacketPtr pkt, MemBackdoorPtr &backdoor) |
| { |
| return ctrl.recvAtomicBackdoor(pkt, backdoor); |
| } |
| |
| bool |
| MemCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) |
| { |
| // pass it to the memory controller |
| return ctrl.recvTimingReq(pkt); |
| } |
| |
| void |
| MemCtrl::MemoryPort::disableSanityCheck() |
| { |
| queue.disableSanityCheck(); |
| } |
| |
| } // namespace memory |
| } // namespace gem5 |