blob: db2bfa4a32186abce00892329c3900a517cfdf14 [file] [log] [blame] [edit]
// -*- mode:c++ -*-
// Copyright (c) 2007 MIPS Technologies, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
////////////////////////////////////////////////////////////////////
//
// The actual MIPS32 ISA decoder
// -----------------------------
// The following instructions are specified in the MIPS32 ISA
// Specification. Decoding closely follows the style specified
// in the MIPS32 ISA specification document starting with Table
// A-2 (document available @ http://www.mips.com)
//
decode OPCODE_HI default Unknown::unknown() {
//Table A-2
0x0: decode OPCODE_LO {
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x1: decode MOVCI {
format BasicOp {
0: movf({{
Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs;
}});
1: movt({{
Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs;
}});
}
}
format BasicOp {
//Table A-3 Note: "Specific encodings of the rd, rs, and
//rt fields are used to distinguish SLL, SSNOP, and EHB
//functions
0x0: decode RS {
0x0: decode RT_RD {
0x0: decode SA default Nop::nop() {
0x1: ssnop({{;}});
0x3: ehb({{;}});
}
default: sll({{ Rd = Rt << SA; }});
}
}
0x2: decode RS_SRL {
0x0:decode SRL {
0: srl({{ Rd = Rt >> SA; }});
//Hardcoded assuming 32-bit ISA,
//probably need parameter here
1: rotr({{
Rd = (Rt << (32 - SA)) | (Rt >> SA);
}});
}
}
0x3: decode RS {
0x0: sra({{
uint32_t temp = Rt >> SA;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < SA; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
0x4: sllv({{ Rd = Rt << Rs<4:0>; }});
0x6: decode SRLV {
0: srlv({{ Rd = Rt >> Rs<4:0>; }});
//Hardcoded assuming 32-bit ISA,
//probably need parameter here
1: rotrv({{
Rd = (Rt << (32 - Rs<4:0>)) | (Rt >> Rs<4:0>);
}});
}
0x7: srav({{
int shift_amt = Rs<4:0>;
uint32_t temp = Rt >> shift_amt;
if ((Rt & 0x80000000) > 0) {
uint32_t mask = 0x80000000;
for (int i = 0; i < shift_amt; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
}
0x1: decode FUNCTION_LO {
//Table A-3 Note: "Specific encodings of the hint field are
//used to distinguish JR from JR.HB and JALR from JALR.HB"
format Jump {
0x0: decode HINT {
0x1: jr_hb({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn, ClearHazards);
default: jr({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn);
}
0x1: decode HINT {
0x1: jalr_hb({{
Rd = NNPC;
NNPC = Rs;
}}, IsCall, ClearHazards);
default: jalr({{
Rd = NNPC;
NNPC = Rs;
}}, IsCall);
}
}
format BasicOp {
0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
0x4: decode FullSystemInt {
0: syscall_se({{
fault = std::make_shared<SESyscallFault>();
}});
default: syscall({{
fault = std::make_shared<SystemCallFault>();
}});
}
0x7: sync({{ ; }}, IsReadBarrier, IsWriteBarrier);
0x5: break({{fault = std::make_shared<BreakpointFault>();}});
}
}
0x2: decode FUNCTION_LO {
0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }},
IntMultOp, IsSerializeBefore);
0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }},
IntMultOp, IsSerializeBefore);
0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
}
0x3: decode FUNCTION_LO {
format HiLoRdSelValOp {
0x0: mult({{ val = Rs_sd * Rt_sd; }}, IntMultOp);
0x1: multu({{ val = Rs_ud * Rt_ud; }}, IntMultOp);
}
format HiLoOp {
0x2: div({{
if (Rt_sd != 0) {
HI0 = Rs_sd % Rt_sd;
LO0 = Rs_sd / Rt_sd;
}
}}, IntDivOp);
0x3: divu({{
if (Rt_ud != 0) {
HI0 = Rs_ud % Rt_ud;
LO0 = Rs_ud / Rt_ud;
}
}}, IntDivOp);
}
}
0x4: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp {
0x0: add({{
uint32_t result;
Rd = result = Rs + Rt;
if (FullSystem &&
findOverflow(32, result, Rs, Rt)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x1: addu({{ Rd = Rs_sw + Rt_sw;}});
0x2: sub({{
uint32_t result;
Rd = result = Rs - Rt;
if (FullSystem &&
findOverflow(32, result, Rs, ~Rt)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x3: subu({{ Rd = Rs_sw - Rt_sw; }});
0x4: and({{ Rd = Rs & Rt; }});
0x5: or({{ Rd = Rs | Rt; }});
0x6: xor({{ Rd = Rs ^ Rt; }});
0x7: nor({{ Rd = ~(Rs | Rt); }});
}
}
}
0x5: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp{
0x2: slt({{ Rd = (Rs_sw < Rt_sw) ? 1 : 0 }});
0x3: sltu({{ Rd = (Rs < Rt) ? 1 : 0 }});
}
}
}
0x6: decode FUNCTION_LO {
format Trap {
0x0: tge({{ cond = (Rs_sw >= Rt_sw); }});
0x1: tgeu({{ cond = (Rs >= Rt); }});
0x2: tlt({{ cond = (Rs_sw < Rt_sw); }});
0x3: tltu({{ cond = (Rs < Rt); }});
0x4: teq({{ cond = (Rs_sw == Rt_sw); }});
0x6: tne({{ cond = (Rs_sw != Rt_sw); }});
}
}
}
0x1: decode REGIMM_HI {
0x0: decode REGIMM_LO {
format Branch {
0x0: bltz({{ cond = (Rs_sw < 0); }});
0x1: bgez({{ cond = (Rs_sw >= 0); }});
0x2: bltzl({{ cond = (Rs_sw < 0); }}, Likely);
0x3: bgezl({{ cond = (Rs_sw >= 0); }}, Likely);
}
}
0x1: decode REGIMM_LO {
format TrapImm {
0x0: tgei( {{ cond = (Rs_sw >= (int16_t)INTIMM); }});
0x1: tgeiu({{
cond = (Rs >= (uint32_t)(int32_t)(int16_t)INTIMM);
}});
0x2: tlti( {{ cond = (Rs_sw < (int16_t)INTIMM); }});
0x3: tltiu({{
cond = (Rs < (uint32_t)(int32_t)(int16_t)INTIMM);
}});
0x4: teqi( {{ cond = (Rs_sw == (int16_t)INTIMM); }});
0x6: tnei( {{ cond = (Rs_sw != (int16_t)INTIMM); }});
}
}
0x2: decode REGIMM_LO {
format Branch {
0x0: bltzal({{ cond = (Rs_sw < 0); }}, Link);
0x1: decode RS {
0x0: bal ({{ cond = 1; }}, IsCall, Link);
default: bgezal({{ cond = (Rs_sw >= 0); }}, Link);
}
0x2: bltzall({{ cond = (Rs_sw < 0); }}, Link, Likely);
0x3: bgezall({{ cond = (Rs_sw >= 0); }}, Link, Likely);
}
}
0x3: decode REGIMM_LO {
// from Table 5-4 MIPS32 REGIMM Encoding of rt Field
// (DSP ASE MANUAL)
0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
format WarnUnimpl {
0x7: synci();
}
}
}
format Jump {
0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }});
0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }},
IsCall, Link);
}
format Branch {
0x4: decode RS_RT {
0x0: b({{ cond = 1; }});
default: beq({{ cond = (Rs_sw == Rt_sw); }});
}
0x5: bne({{ cond = (Rs_sw != Rt_sw); }});
0x6: blez({{ cond = (Rs_sw <= 0); }});
0x7: bgtz({{ cond = (Rs_sw > 0); }});
}
}
0x1: decode OPCODE_LO {
format IntImmOp {
0x0: addi({{
uint32_t result;
Rt = result = Rs + imm;
if (FullSystem &&
findOverflow(32, result, Rs, imm)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x1: addiu({{ Rt = Rs_sw + imm; }});
0x2: slti({{ Rt = (Rs_sw < imm) ? 1 : 0 }});
0x3: sltiu({{ Rt = (Rs < (uint32_t)sextImm) ? 1 : 0;}});
0x4: andi({{ Rt = Rs_sw & zextImm; }});
0x5: ori({{ Rt = Rs_sw | zextImm; }});
0x6: xori({{ Rt = Rs_sw ^ zextImm; }});
0x7: decode RS {
0x0: lui({{ Rt = imm << 16; }});
}
}
}
0x2: decode OPCODE_LO {
//Table A-11 MIPS32 COP0 Encoding of rs Field
0x0: decode RS_MSB {
0x0: decode RS {
format CP0Control {
0x0: mfc0({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
Rt = CP0_RD_SEL;
/* Hack for PageMask */
if (RD == 5) {
// PageMask
if (config3.sp == 0 || pageGrain.esp == 0)
Rt &= 0xFFFFE7FF;
}
}});
0x4: mtc0({{
CP0_RD_SEL = Rt;
CauseReg cause = Cause;
IntCtlReg intCtl = IntCtl;
if (RD == 11) {
// Compare
if (cause.ti == 1) {
cause.ti = 0;
int offset = 10; // corresponding to cause.ip0
offset += intCtl.ipti - 2;
replaceBits(cause, offset, offset, 0);
}
}
Cause = cause;
}});
}
format CP0Unimpl {
0x1: dmfc0();
0x5: dmtc0();
default: unknown();
}
format MT_MFTR {
// Decode MIPS MT MFTR instruction into sub-instructions
0x8: decode MT_U {
0x0: mftc0({{
data = readRegOtherThread(xc,
miscRegClass[RT << 3 | SEL]);
}});
0x1: decode SEL {
0x0: mftgpr({{
data = readRegOtherThread(xc, intRegClass[RT]);
}});
0x1: decode RT {
0x0: mftlo_dsp0({{
data = readRegOtherThread(xc,
int_reg::DspLo0);
}});
0x1: mfthi_dsp0({{
data = readRegOtherThread(xc,
int_reg::DspHi0);
}});
0x2: mftacx_dsp0({{
data = readRegOtherThread(xc,
int_reg::DspAcx0);
}});
0x4: mftlo_dsp1({{
data = readRegOtherThread(xc,
int_reg::DspLo1);
}});
0x5: mfthi_dsp1({{
data = readRegOtherThread(xc,
int_reg::DspHi1);
}});
0x6: mftacx_dsp1({{
data = readRegOtherThread(xc,
int_reg::DspAcx1);
}});
0x8: mftlo_dsp2({{
data = readRegOtherThread(xc,
int_reg::DspLo2);
}});
0x9: mfthi_dsp2({{
data = readRegOtherThread(xc,
int_reg::DspHi2);
}});
0x10: mftacx_dsp2({{
data = readRegOtherThread(xc,
int_reg::DspAcx2);
}});
0x12: mftlo_dsp3({{
data = readRegOtherThread(xc,
int_reg::DspLo3);
}});
0x13: mfthi_dsp3({{
data = readRegOtherThread(xc,
int_reg::DspHi3);
}});
0x14: mftacx_dsp3({{
data = readRegOtherThread(xc,
int_reg::DspAcx3);
}});
0x16: mftdsp({{
data = readRegOtherThread(xc,
int_reg::DspControl);
}});
default: CP0Unimpl::unknown();
}
0x2: decode MT_H {
0x0: mftc1({{
data = readRegOtherThread(xc,
floatRegClass[RT]);
}});
0x1: mfthc1({{
data = readRegOtherThread(xc,
floatRegClass[RT]);
}});
}
0x3: cftc1({{
uint32_t fcsr_val = readRegOtherThread(xc,
float_reg::Fcsr);
switch (RT) {
case 0:
data = readRegOtherThread(xc,
float_reg::Fir);
break;
case 25:
data = (fcsr_val & 0xFE000000 >> 24) |
(fcsr_val & 0x00800000 >> 23);
break;
case 26:
data = fcsr_val & 0x0003F07C;
break;
case 28:
data = (fcsr_val & 0x00000F80) |
(fcsr_val & 0x01000000 >> 21) |
(fcsr_val & 0x00000003);
break;
case 31:
data = fcsr_val;
break;
default:
fatal("FP Control Value (%d) Not Valid");
}
}});
default: CP0Unimpl::unknown();
}
}
}
format MT_MTTR {
// Decode MIPS MT MTTR instruction into sub-instructions
0xC: decode MT_U {
0x0: mttc0({{ setRegOtherThread(xc,
miscRegClass[RD << 3 | SEL], Rt);
}});
0x1: decode SEL {
0x0: mttgpr({{ setRegOtherThread(xc,
intRegClass[RD], Rt);
}});
0x1: decode RT {
0x0: mttlo_dsp0({{ setRegOtherThread(xc,
int_reg::DspLo0, Rt);
}});
0x1: mtthi_dsp0({{ setRegOtherThread(xc,
int_reg::DspHi0, Rt);
}});
0x2: mttacx_dsp0({{ setRegOtherThread(xc,
int_reg::DspAcx0, Rt);
}});
0x4: mttlo_dsp1({{ setRegOtherThread(xc,
int_reg::DspLo1, Rt);
}});
0x5: mtthi_dsp1({{ setRegOtherThread(xc,
int_reg::DspHi1, Rt);
}});
0x6: mttacx_dsp1({{ setRegOtherThread(xc,
int_reg::DspAcx1, Rt);
}});
0x8: mttlo_dsp2({{ setRegOtherThread(xc,
int_reg::DspLo2, Rt);
}});
0x9: mtthi_dsp2({{ setRegOtherThread(xc,
int_reg::DspHi2, Rt);
}});
0x10: mttacx_dsp2({{ setRegOtherThread(xc,
int_reg::DspAcx2, Rt);
}});
0x12: mttlo_dsp3({{ setRegOtherThread(xc,
int_reg::DspLo3, Rt);
}});
0x13: mtthi_dsp3({{ setRegOtherThread(xc,
int_reg::DspHi3, Rt);
}});
0x14: mttacx_dsp3({{ setRegOtherThread(xc,
int_reg::DspAcx3, Rt);
}});
0x16: mttdsp({{ setRegOtherThread(xc,
int_reg::DspControl, Rt);
}});
default: CP0Unimpl::unknown();
}
0x2: mttc1({{
uint64_t data = readRegOtherThread(xc,
floatRegClass[RD]);
data = insertBits(data, MT_H ? 63 : 31,
MT_H ? 32 : 0, Rt);
setRegOtherThread(xc, floatRegClass[RD], data);
}});
0x3: cttc1({{
uint32_t data;
switch (RD) {
case 25:
data = (Rt<7:1> << 25) | // move 31-25
(FCSR & 0x01000000) | // bit 24
(FCSR & 0x004FFFFF); // bit 22-0
break;
case 26:
data = (FCSR & 0xFFFC0000) | // move 31-18
Rt<17:12> << 12 | // bit 17-12
// bit 11-7
(FCSR & 0x00000F80) << 7 |
Rt<6:2> << 2 | // bit 6-2
(FCSR & 0x00000002); // bit 1...0
break;
case 28:
data = (FCSR & 0xFE000000) | // move 31-25
Rt<2:2> << 24 | // bit 24
// bit 23-12
(FCSR & 0x00FFF000) << 23 |
Rt<11:7> << 7 | // bit 24
(FCSR & 0x000007E) |
Rt<1:0>; // bit 22-0
break;
case 31:
data = Rt;
break;
default:
panic("FP Control Value (%d) "
"Not Available. Ignoring "
"Access to Floating Control "
"S""tatus Register", FS);
}
setRegOtherThread(xc, float_reg::Fcsr, data);
}});
default: CP0Unimpl::unknown();
}
}
}
0xB: decode RD {
format MT_Control {
0x0: decode POS {
0x0: decode SEL {
0x1: decode SC {
0x0: dvpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 0;
MVPControl = mvpControl;
}});
0x1: evpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 1;
MVPControl = mvpControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
0x1: decode POS {
0xF: decode SEL {
0x1: decode SC {
0x0: dmt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 0;
VPEControl = vpeControl;
}});
0x1: emt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 1;
VPEControl = vpeControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
}
0xC: decode POS {
0x0: decode SC {
0x0: CP0Control::di({{
StatusReg status = Status;
ConfigReg config = Config;
// Rev 2.0 or beyond?
if (config.ar >= 1) {
Rt = status;
status.ie = 0;
} else {
// Enable this else branch once we
// actually set values for Config on init
fault = std::make_shared<ReservedInstructionFault>();
}
Status = status;
}});
0x1: CP0Control::ei({{
StatusReg status = Status;
ConfigReg config = Config;
if (config.ar >= 1) {
Rt = status;
status.ie = 1;
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
default:CP0Unimpl::unknown();
}
}
default: CP0Unimpl::unknown();
}
format CP0Control {
0xA: rdpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
0xE: wrpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
}
}
//Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
0x1: decode FUNCTION {
format CP0Control {
0x18: eret({{
StatusReg status = Status;
ConfigReg config = Config;
SRSCtlReg srsCtl = SRSCtl;
DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
if (status.erl == 1) {
status.erl = 0;
NPC = ErrorEPC;
// Need to adjust NNPC, otherwise things break
NNPC = ErrorEPC + sizeof(MachInst);
} else {
NPC = EPC;
// Need to adjust NNPC, otherwise things break
NNPC = EPC + sizeof(MachInst);
status.exl = 0;
if (config.ar >=1 &&
srsCtl.hss > 0 &&
status.bev == 0) {
srsCtl.css = srsCtl.pss;
//xc->setShadowSet(srsCtl.pss);
}
}
LLFlag = 0;
Status = status;
SRSCtl = srsCtl;
}}, IsReturn, IsSerializing);
0x1F: deret({{
DebugReg debug = Debug;
if (debug.dm == 1) {
debug.dm = 1;
debug.iexi = 0;
NPC = DEPC;
} else {
NPC = NPC;
// Undefined;
}
Debug = debug;
}}, IsReturn, IsSerializing);
}
format CP0TLB {
0x01: tlbr({{
MipsISA::PTE *PTEntry =
dynamic_cast<MipsISA::TLB *>(
xc->tcBase()->getMMUPtr()->itb)->
getEntry(Index & 0x7FFFFFFF);
if (PTEntry == NULL) {
fatal("Invalid PTE Entry received on "
"a TLBR instruction\n");
}
/* Setup PageMask */
// If 1KB pages are not enabled, a read of PageMask
// must return 0b00 in bits 12, 11
PageMask = (PTEntry->Mask << 11);
/* Setup EntryHi */
EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
/* Setup Entry Lo0 */
EntryLo0 = ((PTEntry->PFN0 << 6) |
(PTEntry->C0 << 3) |
(PTEntry->D0 << 2) |
(PTEntry->V0 << 1) |
PTEntry->G);
/* Setup Entry Lo1 */
EntryLo1 = ((PTEntry->PFN1 << 6) |
(PTEntry->C1 << 3) |
(PTEntry->D1 << 2) |
(PTEntry->V1 << 1) |
PTEntry->G);
}}); // Need to hook up to TLB
0x02: tlbwi({{
//Create PTE
MipsISA::PTE newEntry;
//Write PTE
newEntry.Mask = (Addr)(PageMask >> 11);
newEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (bits(PageGrain, 28) == 0 || bits(Config3, 4) ==0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
newEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
newEntry.VPN &= 0xFFFFFFFC;
}
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((newEntry.Mask & 0xFFFF) == 3) {
newEntry.AddrShiftAmount = 12;
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
newEntry.AddrShiftAmount = 10;
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
newEntry.AddrShiftAmount = 14;
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
newEntry.AddrShiftAmount = 16;
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
newEntry.AddrShiftAmount = 18;
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
newEntry.AddrShiftAmount = 20;
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
newEntry.AddrShiftAmount = 22;
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
newEntry.AddrShiftAmount = 24;
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
newEntry.AddrShiftAmount = 26;
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
newEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
newEntry.OffsetMask =
(1 << newEntry.AddrShiftAmount) - 1;
auto ptr = dynamic_cast<MipsISA::TLB *>(
xc->tcBase()->getMMUPtr()->itb);
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
ptr->insertAt(newEntry, Index & 0x7FFFFFFF, SP);
}});
0x06: tlbwr({{
//Create PTE
MipsISA::PTE newEntry;
//Write PTE
newEntry.Mask = (Addr)(PageMask >> 11);
newEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (bits(PageGrain, 28) == 0 ||
bits(Config3, 4) == 0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
newEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
newEntry.VPN &= 0xFFFFFFFC;
}
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((newEntry.Mask & 0xFFFF) == 3){
newEntry.AddrShiftAmount = 12;
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
newEntry.AddrShiftAmount = 10;
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
newEntry.AddrShiftAmount = 14;
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
newEntry.AddrShiftAmount = 16;
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
newEntry.AddrShiftAmount = 18;
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
newEntry.AddrShiftAmount = 20;
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
newEntry.AddrShiftAmount = 22;
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
newEntry.AddrShiftAmount = 24;
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
newEntry.AddrShiftAmount = 26;
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
newEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
newEntry.OffsetMask =
(1 << newEntry.AddrShiftAmount) - 1;
auto ptr = dynamic_cast<MipsISA::TLB *>(
xc->tcBase()->getMMUPtr()->itb);
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
ptr->insertAt(newEntry, Random, SP);
}});
0x08: tlbp({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
EntryHiReg entryHi = EntryHi;
int tlbIndex;
Addr vpn;
if (pageGrain.esp == 1 && config3.sp ==1) {
vpn = EntryHi >> 11;
} else {
// Mask off lower 2 bits
vpn = ((EntryHi >> 11) & 0xFFFFFFFC);
}
tlbIndex = dynamic_cast<MipsISA::TLB *>(
xc->tcBase()->getMMUPtr()->itb)->
probeEntry(vpn, entryHi.asid);
// Check TLB for entry matching EntryHi
if (tlbIndex != -1) {
Index = tlbIndex;
} else {
// else, set Index = 1 << 31
Index = (1 << 31);
}
}});
}
format CP0Unimpl {
0x20: wait();
}
default: CP0Unimpl::unknown();
}
}
//Table A-13 MIPS32 COP1 Encoding of rs Field
0x1: decode RS_MSB {
0x0: decode RS_HI {
0x0: decode RS_LO {
format CP1Control {
0x0: mfc1 ({{ Rt = Fs_uw; }});
0x2: cfc1({{
switch (FS) {
case 0:
Rt = FIR;
break;
case 25:
Rt = (FCSR & 0xFE000000) >> 24 |
(FCSR & 0x00800000) >> 23;
break;
case 26:
Rt = (FCSR & 0x0003F07C);
break;
case 28:
Rt = (FCSR & 0x00000F80) |
(FCSR & 0x01000000) >> 21 |
(FCSR & 0x00000003);
break;
case 31:
Rt = FCSR;
break;
default:
warn("FP Control Value (%d) Not Valid");
}
}});
0x3: mfhc1({{ Rt = Fs_ud<63:32>; }});
0x4: mtc1({{ Fs_uw = Rt; }});
0x6: ctc1({{
switch (FS) {
case 25:
FCSR = (Rt<7:1> << 25) | // move 31-25
(FCSR & 0x01000000) | // bit 24
(FCSR & 0x004FFFFF); // bit 22-0
break;
case 26:
FCSR = (FCSR & 0xFFFC0000) | // move 31-18
Rt<17:12> << 12 | // bit 17-12
(FCSR & 0x00000F80) << 7 | // bit 11-7
Rt<6:2> << 2 | // bit 6-2
(FCSR & 0x00000002); // bit 1-0
break;
case 28:
FCSR = (FCSR & 0xFE000000) | // move 31-25
Rt<2:2> << 24 | // bit 24
(FCSR & 0x00FFF000) << 23 | // bit 23-12
Rt<11:7> << 7 | // bit 24
(FCSR & 0x000007E) |
Rt<1:0>; // bit 22-0
break;
case 31:
FCSR = Rt;
break;
default:
panic("FP Control Value (%d) "
"Not Available. Ignoring Access "
"to Floating Control Status "
"Register", FS);
}
}});
0x7: mthc1({{
uint64_t fs_hi = Rt;
uint64_t fs_lo = Fs_ud & 0x0FFFFFFFF;
Fs_ud = (fs_hi << 32) | fs_lo;
}});
}
format CP1Unimpl {
0x1: dmfc1();
0x5: dmtc1();
}
}
0x1: decode RS_LO {
0x0: decode ND {
format Branch {
0x0: decode TF {
0x0: bc1f({{
cond = getCondCode(FCSR, BRANCH_CC) == 0;
}});
0x1: bc1t({{
cond = getCondCode(FCSR, BRANCH_CC) == 1;
}});
}
0x1: decode TF {
0x0: bc1fl({{
cond = getCondCode(FCSR, BRANCH_CC) == 0;
}}, Likely);
0x1: bc1tl({{
cond = getCondCode(FCSR, BRANCH_CC) == 1;
}}, Likely);
}
}
}
format CP1Unimpl {
0x1: bc1any2();
0x2: bc1any4();
default: unknown();
}
}
}
0x1: decode RS_HI {
0x2: decode RS_LO {
//Table A-14 MIPS32 COP1 Encoding of Function Field When
//rs=S (( single-precision floating point))
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_s({{ Fd_sf = Fs_sf + Ft_sf; }});
0x1: sub_s({{ Fd_sf = Fs_sf - Ft_sf; }});
0x2: mul_s({{ Fd_sf = Fs_sf * Ft_sf; }});
0x3: div_s({{ Fd_sf = Fs_sf / Ft_sf; }});
0x4: sqrt_s({{ Fd_sf = sqrt(Fs_sf); }});
0x5: abs_s({{ Fd_sf = fabs(Fs_sf); }});
0x7: neg_s({{ Fd_sf = -Fs_sf; }});
}
0x6: BasicOp::mov_s({{ Fd_sf = Fs_sf; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_s({{ val = Fs_sf; }},
ToLong, Round);
0x1: trunc_l_s({{ val = Fs_sf; }},
ToLong, Trunc);
0x2: ceil_l_s({{ val = Fs_sf;}},
ToLong, Ceil);
0x3: floor_l_s({{ val = Fs_sf; }},
ToLong, Floor);
0x4: round_w_s({{ val = Fs_sf; }},
ToWord, Round);
0x5: trunc_w_s({{ val = Fs_sf; }},
ToWord, Trunc);
0x6: ceil_w_s({{ val = Fs_sf; }},
ToWord, Ceil);
0x7: floor_w_s({{ val = Fs_sf; }},
ToWord, Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_s({{
Fd = (getCondCode(FCSR,CC) == 0) ?
Fs : Fd;
}});
0x1: movt_s({{
Fd = (getCondCode(FCSR,CC) == 1) ?
Fs : Fd;
}});
}
}
format BasicOp {
0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
}
format FloatOp {
0x5: recip_s({{ Fd = 1 / Fs; }});
0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs); }});
}
format CP1Unimpl {
default: unknown();
}
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x1: cvt_d_s({{ val = Fs_sf; }}, ToDouble);
0x4: cvt_w_s({{ val = Fs_sf; }}, ToWord);
0x5: cvt_l_s({{ val = Fs_sf; }}, ToLong);
}
0x6: FloatOp::cvt_ps_s({{
Fd_ud = (uint64_t)Fs_uw << 32 |
(uint64_t)Ft_uw;
}});
format CP1Unimpl {
default: unknown();
}
}
0x5: CP1Unimpl::unknown();
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_s({{ cond = 0; }},
SinglePrecision, UnorderedFalse);
0x1: c_un_s({{ cond = 0; }},
SinglePrecision, UnorderedTrue);
0x2: c_eq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedFalse);
0x3: c_ueq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedTrue);
0x4: c_olt_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedFalse);
0x5: c_ult_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedTrue);
0x6: c_ole_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedFalse);
0x7: c_ule_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedTrue, QnanException);
0x6: c_le_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedTrue, QnanException);
}
}
}
//Table A-15 MIPS32 COP1 Encoding of Function Field When
//rs=D
0x1: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_d({{ Fd_df = Fs_df + Ft_df; }});
0x1: sub_d({{ Fd_df = Fs_df - Ft_df; }});
0x2: mul_d({{ Fd_df = Fs_df * Ft_df; }});
0x3: div_d({{ Fd_df = Fs_df / Ft_df; }});
0x4: sqrt_d({{ Fd_df = sqrt(Fs_df); }});
0x5: abs_d({{ Fd_df = fabs(Fs_df); }});
0x7: neg_d({{ Fd_df = -1 * Fs_df; }});
}
0x6: BasicOp::mov_d({{ Fd_df = Fs_df; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_d({{ val = Fs_df; }},
ToLong, Round);
0x1: trunc_l_d({{ val = Fs_df; }},
ToLong, Trunc);
0x2: ceil_l_d({{ val = Fs_df; }},
ToLong, Ceil);
0x3: floor_l_d({{ val = Fs_df; }},
ToLong, Floor);
0x4: round_w_d({{ val = Fs_df; }},
ToWord, Round);
0x5: trunc_w_d({{ val = Fs_df; }},
ToWord, Trunc);
0x6: ceil_w_d({{ val = Fs_df; }},
ToWord, Ceil);
0x7: floor_w_d({{ val = Fs_df; }},
ToWord, Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_d({{
Fd_df = (getCondCode(FCSR,CC) == 0) ?
Fs_df : Fd_df;
}});
0x1: movt_d({{
Fd_df = (getCondCode(FCSR,CC) == 1) ?
Fs_df : Fd_df;
}});
}
}
format BasicOp {
0x2: movz_d({{
Fd_df = (Rt == 0) ? Fs_df : Fd_df;
}});
0x3: movn_d({{
Fd_df = (Rt != 0) ? Fs_df : Fd_df;
}});
}
format FloatOp {
0x5: recip_d({{ Fd_df = 1 / Fs_df; }});
0x6: rsqrt_d({{ Fd_df = 1 / sqrt(Fs_df); }});
}
format CP1Unimpl {
default: unknown();
}
}
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x0: cvt_s_d({{ val = Fs_df; }}, ToSingle);
0x4: cvt_w_d({{ val = Fs_df; }}, ToWord);
0x5: cvt_l_d({{ val = Fs_df; }}, ToLong);
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_d({{ cond = 0; }},
DoublePrecision, UnorderedFalse);
0x1: c_un_d({{ cond = 0; }},
DoublePrecision, UnorderedTrue);
0x2: c_eq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedFalse);
0x3: c_ueq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedTrue);
0x4: c_olt_d({{ cond = (Fs_df < Ft_df); }},
UnorderedFalse);
0x5: c_ult_d({{ cond = (Fs_df < Ft_df); }},
UnorderedTrue);
0x6: c_ole_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedFalse);
0x7: c_ule_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedFalse, QnanException);
0x3: c_ngl_d({{ cond = (Fs_df == Ft_df); }},
UnorderedTrue, QnanException);
0x4: c_lt_d({{ cond = (Fs_df < Ft_df); }},
UnorderedFalse, QnanException);
0x5: c_nge_d({{ cond = (Fs_df < Ft_df); }},
UnorderedTrue, QnanException);
0x6: c_le_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedFalse, QnanException);
0x7: c_ngt_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedTrue, QnanException);
}
}
default: CP1Unimpl::unknown();
}
0x2: CP1Unimpl::unknown();
0x3: CP1Unimpl::unknown();
0x7: CP1Unimpl::unknown();
//Table A-16 MIPS32 COP1 Encoding of Function
//Field When rs=W
0x4: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_w({{ val = Fs_sw; }}, ToSingle);
0x21: cvt_d_w({{ val = Fs_sw; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_w();
}
default: CP1Unimpl::unknown();
}
//Table A-16 MIPS32 COP1 Encoding of Function Field
//When rs=L1
//Note: "1. Format type L is legal only if 64-bit
//floating point operations are enabled."
0x5: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_l({{ val = Fs_sd; }}, ToSingle);
0x21: cvt_d_l({{ val = Fs_sd; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_l();
}
default: CP1Unimpl::unknown();
}
//Table A-17 MIPS64 COP1 Encoding of Function Field
//When rs=PS1
//Note: "1. Format type PS is legal only if 64-bit
//floating point operations are enabled. "
0x6: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format Float64Op {
0x0: add_ps({{
Fd1_sf = Fs1_sf + Ft2_sf;
Fd2_sf = Fs2_sf + Ft2_sf;
}});
0x1: sub_ps({{
Fd1_sf = Fs1_sf - Ft2_sf;
Fd2_sf = Fs2_sf - Ft2_sf;
}});
0x2: mul_ps({{
Fd1_sf = Fs1_sf * Ft2_sf;
Fd2_sf = Fs2_sf * Ft2_sf;
}});
0x5: abs_ps({{
Fd1_sf = fabs(Fs1_sf);
Fd2_sf = fabs(Fs2_sf);
}});
0x6: mov_ps({{
Fd1_sf = Fs1_sf;
Fd2_sf = Fs2_sf;
}});
0x7: neg_ps({{
Fd1_sf = -(Fs1_sf);
Fd2_sf = -(Fs2_sf);
}});
default: CP1Unimpl::unknown();
}
}
0x1: CP1Unimpl::unknown();
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format Float64Op {
0x0: movf_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
Fs2 : Fd2;
}});
0x1: movt_ps({{
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
Fs2 : Fd2;
}});
}
}
format Float64Op {
0x2: movz_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 0) ?
Fs2 : Fd2;
}});
0x3: movn_ps({{
Fd1 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs2 : Fd2;
}});
}
default: CP1Unimpl::unknown();
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pu({{ Fd_sf = Fs2_sf; }});
default: CP1Unimpl::unknown();
}
0x5: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pl({{ Fd_sf = Fs1_sf; }});
format Float64Op {
0x4: pll({{
Fd_ud = (uint64_t)Fs1_uw << 32 | Ft1_uw;
}});
0x5: plu({{
Fd_ud = (uint64_t)Fs1_uw << 32 | Ft2_uw;
}});
0x6: pul({{
Fd_ud = (uint64_t)Fs2_uw << 32 | Ft1_uw;
}});
0x7: puu({{
Fd_ud = (uint64_t)Fs2_uw << 32 | Ft2_uw;
}});
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse);
0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedTrue);
0x2: c_eq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedFalse);
0x3: c_ueq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedTrue);
0x4: c_olt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedFalse);
0x5: c_ult_ps({{ cond1 = (Fs_sf < Ft_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedTrue);
0x6: c_ole_ps({{ cond1 = (Fs_sf <= Ft_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedFalse);
0x7: c_ule_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse, QnanException);
0x1: c_ngle_ps({{ cond1 = 0; }},
{{ cond2 = 0; }},
UnorderedTrue, QnanException);
0x2: c_seq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedTrue, QnanException);
0x6: c_le_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedTrue, QnanException);
}
}
}
}
default: CP1Unimpl::unknown();
}
}
//Table A-19 MIPS32 COP2 Encoding of rs Field
0x2: decode RS_MSB {
format CP2Unimpl {
0x0: decode RS_HI {
0x0: decode RS_LO {
0x0: mfc2();
0x2: cfc2();
0x3: mfhc2();
0x4: mtc2();
0x6: ctc2();
0x7: mftc2();
default: unknown();
}
0x1: decode ND {
0x0: decode TF {
0x0: bc2f();
0x1: bc2t();
default: unknown();
}
0x1: decode TF {
0x0: bc2fl();
0x1: bc2tl();
default: unknown();
}
default: unknown();
}
default: unknown();
}
default: unknown();
}
}
//Table A-20 MIPS64 COP1X Encoding of Function Field 1
//Note: "COP1X instructions are legal only if 64-bit floating point
//operations are enabled."
0x3: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format LoadIndexedMemory {
0x0: lwxc1({{ Fd_uw = Mem; }});
0x1: ldxc1({{ Fd_ud = Mem_ud; }});
0x5: luxc1({{ Fd_ud = Mem_ud; }},
{{ EA = (Rs + Rt) & ~7; }});
}
}
0x1: decode FUNCTION_LO {
format StoreIndexedMemory {
0x0: swxc1({{ Mem = Fs_uw; }});
0x1: sdxc1({{ Mem_ud = Fs_ud; }});
0x5: suxc1({{ Mem_ud = Fs_ud; }},
{{ EA = (Rs + Rt) & ~7; }});
}
0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
}
0x3: decode FUNCTION_LO {
0x6: Float64Op::alnv_ps({{
if (Rs<2:0> == 0) {
Fd_ud = Fs_ud;
} else if (Rs<2:0> == 4) {
Fd_ud = Ft_ud<31:0> << 32 | Fs_ud<63:32>;
} else {
Fd_ud = Fd_ud;
}
}});
}
format FloatAccOp {
0x4: decode FUNCTION_LO {
0x0: madd_s({{ Fd_sf = (Fs_sf * Ft_sf) + Fr_sf; }});
0x1: madd_d({{ Fd_df = (Fs_df * Ft_df) + Fr_df; }});
0x6: madd_ps({{
Fd1_sf = (Fs1_df * Ft1_df) + Fr1_df;
Fd2_sf = (Fs2_df * Ft2_df) + Fr2_df;
}});
}
0x5: decode FUNCTION_LO {
0x0: msub_s({{ Fd_sf = (Fs_sf * Ft_sf) - Fr_sf; }});
0x1: msub_d({{ Fd_df = (Fs_df * Ft_df) - Fr_df; }});
0x6: msub_ps({{
Fd1_sf = (Fs1_df * Ft1_df) - Fr1_df;
Fd2_sf = (Fs2_df * Ft2_df) - Fr2_df;
}});
}
0x6: decode FUNCTION_LO {
0x0: nmadd_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) - Fr_sf; }});
0x1: nmadd_d({{ Fd_df = (-1 * Fs_df * Ft_df) - Fr_df; }});
0x6: nmadd_ps({{
Fd1_sf = -((Fs1_df * Ft1_df) + Fr1_df);
Fd2_sf = -((Fs2_df * Ft2_df) + Fr2_df);
}});
}
0x7: decode FUNCTION_LO {
0x0: nmsub_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) + Fr_sf; }});
0x1: nmsub_d({{ Fd_df = (-1 * Fs_df * Ft_df) + Fr_df; }});
0x6: nmsub_ps({{
Fd1_sf = -((Fs1_df * Ft1_df) - Fr1_df);
Fd2_sf = -((Fs2_df * Ft2_df) - Fr2_df);
}});
}
}
}
format Branch {
0x4: beql({{ cond = (Rs_sw == Rt_sw); }}, Likely);
0x5: bnel({{ cond = (Rs_sw != Rt_sw); }}, Likely);
0x6: blezl({{ cond = (Rs_sw <= 0); }}, Likely);
0x7: bgtzl({{ cond = (Rs_sw > 0); }}, Likely);
}
}
0x3: decode OPCODE_LO {
//Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
0x4: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x2: IntOp::mul({{
int64_t temp1 = Rs_sd * Rt_sd;
Rd = temp1<31:0>;
}}, IntMultOp);
format HiLoRdSelValOp {
0x0: madd({{
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
(Rs_sd * Rt_sd);
}}, IntMultOp);
0x1: maddu({{
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
(Rs_ud * Rt_ud);
}}, IntMultOp);
0x4: msub({{
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
(Rs_sd * Rt_sd);
}}, IntMultOp);
0x5: msubu({{
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
(Rs_ud * Rt_ud);
}}, IntMultOp);
}
}
0x4: decode FUNCTION_LO {
format BasicOp {
0x0: clz({{
int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if (Rs<idx:idx> == 1) {
cnt = 31 - idx;
break;
}
}
Rd = cnt;
}});
0x1: clo({{
int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if (Rs<idx:idx> == 0) {
cnt = 31 - idx;
break;
}
}
Rd = cnt;
}});
}
}
0x7: decode FUNCTION_LO {
0x7: FailUnimpl::sdbbp();
}
}
//Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
//of the Architecture
0x7: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format BasicOp {
0x0: ext({{ Rt = bits(Rs, MSB + LSB, LSB); }});
0x4: ins({{
Rt = bits(Rt, 31, MSB + 1) << (MSB + 1) |
bits(Rs, MSB - LSB, 0) << LSB |
bits(Rt, LSB - 1, 0);
}});
}
}
0x1: decode FUNCTION_LO {
format MT_Control {
0x0: fork({{
forkThread(xc->tcBase(), fault, RD, Rs, Rt);
}}, UserMode);
0x1: yield({{
Rd = yieldThread(xc->tcBase(), fault, Rs_sw,
YQMask);
}}, UserMode);
}
//Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format LoadIndexedMemory {
0x0: lwx({{ Rd = Mem; }});
0x4: lhx({{ Rd = Mem_sh; }});
0x6: lbux({{ Rd = Mem_ub; }});
}
}
}
0x4: DspIntOp::insv({{
int pos = dspctl<5:0>;
int size = dspctl<12:7> - 1;
Rt = insertBits(Rt, pos + size, pos, Rs<size:0>);
}});
}
0x2: decode FUNCTION_LO {
//Table 5-5 MIPS32 ADDU.QB Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: addu_qb({{
Rd = dspAdd(Rs, Rt, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: subu_qb({{
Rd = dspSub(Rs, Rt, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x4: addu_s_qb({{
Rd = dspAdd(Rs, Rt, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl);
}});
0x5: subu_s_qb({{
Rd = dspSub(Rs, Rt, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl);
}});
0x6: muleu_s_ph_qbl({{
Rd = dspMuleu(Rs, Rt, MODE_L, &dspctl);
}}, IntMultOp);
0x7: muleu_s_ph_qbr({{
Rd = dspMuleu(Rs, Rt, MODE_R, &dspctl);
}}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addu_ph({{
Rd = dspAdd(Rs, Rt, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: subu_ph({{
Rd = dspSub(Rs, Rt, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x2: addq_ph({{
Rd = dspAdd(Rs, Rt, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x3: subq_ph({{
Rd = dspSub(Rs, Rt, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x4: addu_s_ph({{
Rd = dspAdd(Rs, Rt, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl);
}});
0x5: subu_s_ph({{
Rd = dspSub(Rs, Rt, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl);
}});
0x6: addq_s_ph({{
Rd = dspAdd(Rs, Rt, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x7: subq_s_ph({{
Rd = dspSub(Rs, Rt, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addsc({{
int64_t dresult;
dresult = Rs_ud + Rt_ud;
Rd = dresult<31:0>;
dspctl = insertBits(dspctl, 13, 13,
dresult<32:32>);
}});
0x1: addwc({{
int64_t dresult;
dresult = Rs_sd + Rt_sd + dspctl<13:13>;
Rd = dresult<31:0>;
if (dresult<32:32> != dresult<31:31>)
dspctl = insertBits(dspctl, 20, 20, 1);
}});
0x2: modsub({{
Rd = (Rs_sw == 0) ? Rt_sw<23:8> :
Rs_sw - Rt_sw<7:0>;
}});
0x4: raddu_w_qb({{
Rd = Rs<31:24> + Rs<23:16> +
Rs<15:8> + Rs<7:0>;
}});
0x6: addq_s_w({{
Rd = dspAdd(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x7: subq_s_w({{
Rd = dspSub(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x4: muleq_s_w_phl({{
Rd = dspMuleq(Rs_sw, Rt_sw,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: muleq_s_w_phr({{
Rd = dspMuleq(Rs_sw, Rt_sw,
MODE_R, &dspctl);
}}, IntMultOp);
0x6: mulq_s_ph({{
Rd = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, NOROUND, &dspctl);
}}, IntMultOp);
0x7: mulq_rs_ph({{
Rd = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, ROUND, &dspctl);
}}, IntMultOp);
}
}
}
//Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field
//(DSP ASE MANUAL)
0x1: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: cmpu_eq_qb({{
dspCmp(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl);
}});
0x1: cmpu_lt_qb({{
dspCmp(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl);
}});
0x2: cmpu_le_qb({{
dspCmp(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl);
}});
0x3: pick_qb({{
Rd = dspPick(Rs, Rt, SIMD_FMT_QB, &dspctl);
}});
0x4: cmpgu_eq_qb({{
Rd = dspCmpg(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_EQ );
}});
0x5: cmpgu_lt_qb({{
Rd = dspCmpg(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_LT);
}});
0x6: cmpgu_le_qb({{
Rd = dspCmpg(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_LE);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: cmp_eq_ph({{
dspCmp(Rs, Rt, SIMD_FMT_PH,
SIGNED, CMP_EQ, &dspctl);
}});
0x1: cmp_lt_ph({{
dspCmp(Rs, Rt, SIMD_FMT_PH,
SIGNED, CMP_LT, &dspctl);
}});
0x2: cmp_le_ph({{
dspCmp(Rs, Rt, SIMD_FMT_PH,
SIGNED, CMP_LE, &dspctl);
}});
0x3: pick_ph({{
Rd = dspPick(Rs, Rt, SIMD_FMT_PH, &dspctl);
}});
0x4: precrq_qb_ph({{
Rd = Rs<31:24> << 24 | Rs<15:8> << 16 |
Rt<31:24> << 8 | Rt<15:8>;
}});
0x5: precr_qb_ph({{
Rd = Rs<23:16> << 24 | Rs<7:0> << 16 |
Rt<23:16> << 8 | Rt<7:0>;
}});
0x6: packrl_ph({{
Rd = dspPack(Rs, Rt, SIMD_FMT_PH);
}});
0x7: precrqu_s_qb_ph({{
Rd = dspPrecrqu(Rs, Rt, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: precrq_ph_w({{
Rd = Rs<31:16> << 16 | Rt<31:16>;
}});
0x5: precrq_rs_ph_w({{
Rd = dspPrecrq(Rs, Rt, SIMD_FMT_W, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x0: cmpgdu_eq_qb({{
Rd = dspCmpgd(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl);
}});
0x1: cmpgdu_lt_qb({{
Rd = dspCmpgd(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl);
}});
0x2: cmpgdu_le_qb({{
Rd = dspCmpgd(Rs, Rt, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl);
}});
0x6: precr_sra_ph_w({{
Rt = dspPrecrSra(Rt, Rs, RD,
SIMD_FMT_W, NOROUND);
}});
0x7: precr_sra_r_ph_w({{
Rt = dspPrecrSra(Rt, Rs, RD,
SIMD_FMT_W, ROUND);
}});
}
}
}
//Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field
//(DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x1: absq_s_qb({{
Rd = dspAbs(Rt_sw, SIMD_FMT_QB, &dspctl);
}});
0x2: repl_qb({{
Rd = RS_RT<7:0> << 24 | RS_RT<7:0> << 16 |
RS_RT<7:0> << 8 | RS_RT<7:0>;
}});
0x3: replv_qb({{
Rd = Rt<7:0> << 24 | Rt<7:0> << 16 |
Rt<7:0> << 8 | Rt<7:0>;
}});
0x4: precequ_ph_qbl({{
Rd = dspPrece(Rt, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_L);
}});
0x5: precequ_ph_qbr({{
Rd = dspPrece(Rt, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_R);
}});
0x6: precequ_ph_qbla({{
Rd = dspPrece(Rt, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_LA);
}});
0x7: precequ_ph_qbra({{
Rd = dspPrece(Rt, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_RA);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x1: absq_s_ph({{
Rd = dspAbs(Rt_sw, SIMD_FMT_PH, &dspctl);
}});
0x2: repl_ph({{
Rd = (sext<10>(RS_RT))<15:0> << 16 |
(sext<10>(RS_RT))<15:0>;
}});
0x3: replv_ph({{
Rd = Rt<15:0> << 16 | Rt<15:0>;
}});
0x4: preceq_w_phl({{
Rd = dspPrece(Rt, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_L);
}});
0x5: preceq_w_phr({{
Rd = dspPrece(Rt, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_R);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x1: absq_s_w({{
Rd = dspAbs(Rt_sw, SIMD_FMT_W, &dspctl);
}});
}
}
0x3: decode OP_LO {
0x3: IntOp::bitrev({{
Rd = bitrev(Rt<15:0>);
}});
format DspIntOp {
0x4: preceu_ph_qbl({{
Rd = dspPrece(Rt, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_L);
}});
0x5: preceu_ph_qbr({{
Rd = dspPrece(Rt, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_R );
}});
0x6: preceu_ph_qbla({{
Rd = dspPrece(Rt, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_LA );
}});
0x7: preceu_ph_qbra({{
Rd = dspPrece(Rt, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_RA);
}});
}
}
}
//Table 5-8 MIPS32 SHLL.QB Encoding of the op Field
//(DSP ASE MANUAL)
0x3: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: shll_qb({{
Rd = dspShll(Rt_sw, RS, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: shrl_qb({{
Rd = dspShrl(Rt_sw, RS, SIMD_FMT_QB,
UNSIGNED);
}});
0x2: shllv_qb({{
Rd = dspShll(Rt_sw, Rs_sw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x3: shrlv_qb({{
Rd = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_QB,
UNSIGNED);
}});
0x4: shra_qb({{
Rd = dspShra(Rt_sw, RS, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl);
}});
0x5: shra_r_qb({{
Rd = dspShra(Rt_sw, RS, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl);
}});
0x6: shrav_qb({{
Rd = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl);
}});
0x7: shrav_r_qb({{
Rd = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: shll_ph({{
Rd = dspShll(Rt, RS, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x1: shra_ph({{
Rd = dspShra(Rt_sw, RS, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl);
}});
0x2: shllv_ph({{
Rd = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x3: shrav_ph({{
Rd = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl);
}});
0x4: shll_s_ph({{
Rd = dspShll(Rt_sw, RS, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x5: shra_r_ph({{
Rd = dspShra(Rt_sw, RS, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl);
}});
0x6: shllv_s_ph({{
Rd = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x7: shrav_r_ph({{
Rd = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: shll_s_w({{
Rd = dspShll(Rt_sw, RS, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x5: shra_r_w({{
Rd = dspShra(Rt_sw, RS, SIMD_FMT_W,
ROUND, SIGNED, &dspctl);
}});
0x6: shllv_s_w({{
Rd = dspShll(Rt_sw, Rs_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x7: shrav_r_w({{
Rd = dspShra(Rt_sw, Rs_sw, SIMD_FMT_W,
ROUND, SIGNED, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x1: shrl_ph({{
Rd = dspShrl(Rt_sw, RS, SIMD_FMT_PH,
UNSIGNED);
}});
0x3: shrlv_ph({{
Rd = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_PH,
UNSIGNED);
}});
}
}
}
}
0x3: decode FUNCTION_LO {
//Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field
//(DSP ASE Rev2 Manual)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: adduh_qb({{
Rd = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB,
NOROUND, UNSIGNED);
}});
0x1: subuh_qb({{
Rd = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB,
NOROUND, UNSIGNED);
}});
0x2: adduh_r_qb({{
Rd = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB,
ROUND, UNSIGNED);
}});
0x3: subuh_r_qb({{
Rd = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB,
ROUND, UNSIGNED);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addqh_ph({{
Rd = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOROUND, SIGNED);
}});
0x1: subqh_ph({{
Rd = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOROUND, SIGNED);
}});
0x2: addqh_r_ph({{
Rd = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH,
ROUND, SIGNED);
}});
0x3: subqh_r_ph({{
Rd = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH,
ROUND, SIGNED);
}});
0x4: mul_ph({{
Rd = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOSATURATE, &dspctl);
}}, IntMultOp);
0x6: mul_s_ph({{
Rd = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, &dspctl);
}}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addqh_w({{
Rd = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W,
NOROUND, SIGNED);
}});
0x1: subqh_w({{
Rd = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W,
NOROUND, SIGNED);
}});
0x2: addqh_r_w({{
Rd = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W,
ROUND, SIGNED);
}});
0x3: subqh_r_w({{
Rd = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W,
ROUND, SIGNED);
}});
0x6: mulq_s_w({{
Rd = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, NOROUND, &dspctl);
}}, IntMultOp);
0x7: mulq_rs_w({{
Rd = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, ROUND, &dspctl);
}}, IntMultOp);
}
}
}
}
//Table A-10 MIPS32 BSHFL Encoding of sa Field
0x4: decode SA {
format BasicOp {
0x02: wsbh({{
Rd = Rt<23:16> << 24 | Rt<31:24> << 16 |
Rt<7:0> << 8 | Rt<15:8>;
}});
0x10: seb({{ Rd = Rt_sb; }});
0x18: seh({{ Rd = Rt_sh; }});
}
}
0x6: decode FUNCTION_LO {
//Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: dpa_w_ph({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L);
}}, IntMultOp);
0x1: dps_w_ph({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L);
}}, IntMultOp);
0x2: mulsa_w_ph({{
dspac = dspMulsa(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH );
}}, IntMultOp);
0x3: dpau_h_qbl({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L);
}}, IntMultOp);
0x4: dpaq_s_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: dpsq_s_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x6: mulsaq_s_w_ph({{
dspac = dspMulsaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
&dspctl);
}}, IntMultOp);
0x7: dpau_h_qbr({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R);
}}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x0: dpax_w_ph({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X);
}}, IntMultOp);
0x1: dpsx_w_ph({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X);
}}, IntMultOp);
0x3: dpsu_h_qbl({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L);
}}, IntMultOp);
0x4: dpaq_sa_l_w({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: dpsq_sa_l_w({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x7: dpsu_h_qbr({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R);
}}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspHiLoOp {
0x0: maq_sa_w_phl({{
dspac = dspMaq(dspac, Rs, Rt,
ACDST, SIMD_FMT_PH,
MODE_L, SATURATE, &dspctl);
}}, IntMultOp);
0x2: maq_sa_w_phr({{
dspac = dspMaq(dspac, Rs, Rt,
ACDST, SIMD_FMT_PH,
MODE_R, SATURATE, &dspctl);
}}, IntMultOp);
0x4: maq_s_w_phl({{
dspac = dspMaq(dspac, Rs, Rt,
ACDST, SIMD_FMT_PH,
MODE_L, NOSATURATE, &dspctl);
}}, IntMultOp);
0x6: maq_s_w_phr({{
dspac = dspMaq(dspac, Rs, Rt,
ACDST, SIMD_FMT_PH,
MODE_R, NOSATURATE, &dspctl);
}}, IntMultOp);
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x0: dpaqx_s_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x1: dpsqx_s_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x2: dpaqx_sa_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x3: dpsqx_sa_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
}
}
}
//Table 3.3 MIPS32 APPEND Encoding of the op Field
0x1: decode OP_HI {
0x0: decode OP_LO {
format IntOp {
0x0: append({{
Rt = (Rt << RD) | bits(Rs, RD - 1, 0);
}});
0x1: prepend({{
Rt = (Rt >> RD) |
(bits(Rs, RD - 1, 0) << (32 - RD));
}});
}
}
0x2: decode OP_LO {
format IntOp {
0x0: balign({{
Rt = (Rt << (8 * BP)) | (Rs >> (8 * (4 - BP)));
}});
}
}
}
}
0x7: decode FUNCTION_LO {
//Table 5-11 MIPS32 EXTR.W Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: extr_w({{
Rt = dspExtr(dspac, SIMD_FMT_W, RS,
NOROUND, NOSATURATE, &dspctl);
}});
0x1: extrv_w({{
Rt = dspExtr(dspac, SIMD_FMT_W, Rs,
NOROUND, NOSATURATE, &dspctl);
}});
0x2: extp({{
Rt = dspExtp(dspac, RS, &dspctl);
}});
0x3: extpv({{
Rt = dspExtp(dspac, Rs, &dspctl);
}});
0x4: extr_r_w({{
Rt = dspExtr(dspac, SIMD_FMT_W, RS,
ROUND, NOSATURATE, &dspctl);
}});
0x5: extrv_r_w({{
Rt = dspExtr(dspac, SIMD_FMT_W, Rs,
ROUND, NOSATURATE, &dspctl);
}});
0x6: extr_rs_w({{
Rt = dspExtr(dspac, SIMD_FMT_W, RS,
ROUND, SATURATE, &dspctl);
}});
0x7: extrv_rs_w({{
Rt = dspExtr(dspac, SIMD_FMT_W, Rs,
ROUND, SATURATE, &dspctl);
}});
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x2: extpdp({{
Rt = dspExtpd(dspac, RS, &dspctl);
}});
0x3: extpdpv({{
Rt = dspExtpd(dspac, Rs, &dspctl);
}});
0x6: extr_s_h({{
Rt = dspExtr(dspac, SIMD_FMT_PH, RS,
NOROUND, SATURATE, &dspctl);
}});
0x7: extrv_s_h({{
Rt = dspExtr(dspac, SIMD_FMT_PH, Rs,
NOROUND, SATURATE, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x2: rddsp({{
Rd = readDSPControl(&dspctl, RDDSPMASK);
}});
0x3: wrdsp({{
writeDSPControl(&dspctl, Rs, WRDSPMASK);
}});
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x2: shilo({{
if ((int64_t)sext<6>(HILOSA) < 0) {
dspac = (uint64_t)dspac <<
-sext<6>(HILOSA);
} else {
dspac = (uint64_t)dspac >>
sext<6>(HILOSA);
}
}});
0x3: shilov({{
if ((int64_t)szext<6>(Rs_sw) < 0) {
dspac = (uint64_t)dspac <<
-sext<6>(Rs_sw);
} else {
dspac = (uint64_t)dspac >> szext<6>(Rs_sw);
}
}});
0x7: mthlip({{
dspac = dspac << 32;
dspac |= Rs;
dspctl = insertBits(dspctl, 5, 0,
dspctl<5:0> + 32);
}});
}
}
}
0x3: decode OP default FailUnimpl::rdhwr() {
0x0: decode FullSystemInt {
0: decode RD {
29: BasicOp::rdhwr_se({{ Rt = TpValue; }});
}
}
}
}
}
}
0x4: decode OPCODE_LO {
format LoadMemory {
0x0: lb({{ Rt = Mem_sb; }});
0x1: lh({{ Rt = Mem_sh; }});
0x3: lw({{ Rt = Mem_sw; }});
0x4: lbu({{ Rt = Mem_ub;}});
0x5: lhu({{ Rt = Mem_uh; }});
}
format LoadUnalignedMemory {
0x2: lwl({{
uint32_t mem_shift = 24 - (8 * byte_offset);
Rt = mem_word << mem_shift | (Rt & mask(mem_shift));
}});
0x6: lwr({{
uint32_t mem_shift = 8 * byte_offset;
Rt = (Rt & (mask(mem_shift) << (32 - mem_shift))) |
(mem_word >> mem_shift);
}});
}
}
0x5: decode OPCODE_LO {
format StoreMemory {
0x0: sb({{ Mem_ub = Rt<7:0>; }});
0x1: sh({{ Mem_uh = Rt<15:0>; }});
0x3: sw({{ Mem = Rt<31:0>; }});
}
format StoreUnalignedMemory {
0x2: swl({{
uint32_t reg_shift = 24 - (8 * byte_offset);
uint32_t mem_shift = 32 - reg_shift;
mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
(Rt >> reg_shift);
}});
0x6: swr({{
uint32_t reg_shift = 8 * byte_offset;
mem_word = Rt << reg_shift |
(mem_word & (mask(reg_shift)));
}});
}
format CP0Control {
0x7: cache({{
//Addr CacheEA = Rs + OFFSET;
//fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
}});
}
}
0x6: decode OPCODE_LO {
format LoadMemory {
0x0: ll({{ Rt = Mem; }}, mem_flags=LLSC);
0x1: lwc1({{ Ft_uw = Mem; }});
0x5: ldc1({{ Ft_ud = Mem_ud; }});
}
0x2: CP2Unimpl::lwc2();
0x6: CP2Unimpl::ldc2();
0x3: Prefetch::pref();
}
0x7: decode OPCODE_LO {
0x0: StoreCond::sc({{ Mem = Rt; }},
{{ uint64_t tmp = write_result;
Rt = (tmp == 0 || tmp == 1) ? tmp : Rt;
}}, mem_flags=LLSC,
inst_flags = IsStoreConditional);
format StoreMemory {
0x1: swc1({{ Mem = Ft_uw; }});
0x5: sdc1({{ Mem_ud = Ft_ud; }});
}
0x2: CP2Unimpl::swc2();
0x6: CP2Unimpl::sdc2();
}
}