| |
| /* |
| * Copyright (c) 2010-2014, 2017 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2004-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| * Korey Sewell |
| */ |
| |
| #ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__ |
| #define __CPU_O3_LSQ_UNIT_IMPL_HH__ |
| |
| #include "arch/generic/debugfaults.hh" |
| #include "arch/locked_mem.hh" |
| #include "base/str.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/checker/cpu.hh" |
| #include "cpu/o3/lsq.hh" |
| #include "cpu/o3/lsq_unit.hh" |
| #include "debug/Activity.hh" |
| #include "debug/IEW.hh" |
| #include "debug/LSQUnit.hh" |
| #include "debug/O3PipeView.hh" |
| #include "mem/packet.hh" |
| #include "mem/request.hh" |
| |
| template<class Impl> |
| LSQUnit<Impl>::WritebackEvent::WritebackEvent(const DynInstPtr &_inst, |
| PacketPtr _pkt, LSQUnit *lsq_ptr) |
| : Event(Default_Pri, AutoDelete), |
| inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr) |
| { |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::WritebackEvent::process() |
| { |
| assert(!lsqPtr->cpu->switchedOut()); |
| |
| lsqPtr->writeback(inst, pkt); |
| |
| if (pkt->senderState) |
| delete pkt->senderState; |
| |
| delete pkt; |
| } |
| |
| template<class Impl> |
| const char * |
| LSQUnit<Impl>::WritebackEvent::description() const |
| { |
| return "Store writeback"; |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::completeDataAccess(PacketPtr pkt) |
| { |
| LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState); |
| DynInstPtr inst = state->inst; |
| DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum); |
| DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum); |
| |
| if (state->cacheBlocked) { |
| // This is the first half of a previous split load, |
| // where the 2nd half blocked, ignore this response |
| DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier " |
| "blocked split load recieved. Ignoring.\n", inst->seqNum); |
| delete state; |
| return; |
| } |
| |
| // If this is a split access, wait until all packets are received. |
| if (TheISA::HasUnalignedMemAcc && !state->complete()) { |
| return; |
| } |
| |
| assert(!cpu->switchedOut()); |
| if (!inst->isSquashed()) { |
| if (!state->noWB) { |
| // Only loads and store conditionals perform the writeback |
| // after receving the response from the memory |
| assert(inst->isLoad() || inst->isStoreConditional()); |
| if (!TheISA::HasUnalignedMemAcc || !state->isSplit || |
| !state->isLoad) { |
| writeback(inst, pkt); |
| } else { |
| writeback(inst, state->mainPkt); |
| } |
| } |
| |
| if (inst->isStore()) { |
| completeStore(state->idx); |
| } |
| } |
| |
| if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) { |
| delete state->mainPkt; |
| } |
| |
| pkt->req->setAccessLatency(); |
| cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt)); |
| |
| delete state; |
| } |
| |
| template <class Impl> |
| LSQUnit<Impl>::LSQUnit(uint32_t lqEntries, uint32_t sqEntries) |
| : lsqID(-1), storeQueue(sqEntries+1), loadQueue(lqEntries+1), |
| LQEntries(lqEntries+1), SQEntries(sqEntries+1), |
| loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false), |
| isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false), |
| pendingPkt(nullptr) |
| { |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, |
| LSQ *lsq_ptr, unsigned id) |
| { |
| lsqID = id; |
| |
| cpu = cpu_ptr; |
| iewStage = iew_ptr; |
| |
| lsq = lsq_ptr; |
| |
| DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",lsqID); |
| |
| depCheckShift = params->LSQDepCheckShift; |
| checkLoads = params->LSQCheckLoads; |
| cacheStorePorts = params->cacheStorePorts; |
| needsTSO = params->needsTSO; |
| |
| resetState(); |
| } |
| |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::resetState() |
| { |
| loads = stores = storesToWB = 0; |
| |
| loadHead = loadTail = 0; |
| |
| storeHead = storeWBIdx = storeTail = 0; |
| |
| usedStorePorts = 0; |
| |
| retryPkt = NULL; |
| memDepViolator = NULL; |
| |
| stalled = false; |
| |
| cacheBlockMask = ~(cpu->cacheLineSize() - 1); |
| } |
| |
| template<class Impl> |
| std::string |
| LSQUnit<Impl>::name() const |
| { |
| if (Impl::MaxThreads == 1) { |
| return iewStage->name() + ".lsq"; |
| } else { |
| return iewStage->name() + ".lsq.thread" + std::to_string(lsqID); |
| } |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::regStats() |
| { |
| lsqForwLoads |
| .name(name() + ".forwLoads") |
| .desc("Number of loads that had data forwarded from stores"); |
| |
| invAddrLoads |
| .name(name() + ".invAddrLoads") |
| .desc("Number of loads ignored due to an invalid address"); |
| |
| lsqSquashedLoads |
| .name(name() + ".squashedLoads") |
| .desc("Number of loads squashed"); |
| |
| lsqIgnoredResponses |
| .name(name() + ".ignoredResponses") |
| .desc("Number of memory responses ignored because the instruction is squashed"); |
| |
| lsqMemOrderViolation |
| .name(name() + ".memOrderViolation") |
| .desc("Number of memory ordering violations"); |
| |
| lsqSquashedStores |
| .name(name() + ".squashedStores") |
| .desc("Number of stores squashed"); |
| |
| invAddrSwpfs |
| .name(name() + ".invAddrSwpfs") |
| .desc("Number of software prefetches ignored due to an invalid address"); |
| |
| lsqBlockedLoads |
| .name(name() + ".blockedLoads") |
| .desc("Number of blocked loads due to partial load-store forwarding"); |
| |
| lsqRescheduledLoads |
| .name(name() + ".rescheduledLoads") |
| .desc("Number of loads that were rescheduled"); |
| |
| lsqCacheBlocked |
| .name(name() + ".cacheBlocked") |
| .desc("Number of times an access to memory failed due to the cache being blocked"); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port) |
| { |
| dcachePort = dcache_port; |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::clearLQ() |
| { |
| loadQueue.clear(); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::clearSQ() |
| { |
| storeQueue.clear(); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::drainSanityCheck() const |
| { |
| for (int i = 0; i < loadQueue.size(); ++i) |
| assert(!loadQueue[i]); |
| |
| assert(storesToWB == 0); |
| assert(!retryPkt); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::takeOverFrom() |
| { |
| resetState(); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::resizeLQ(unsigned size) |
| { |
| unsigned size_plus_sentinel = size + 1; |
| assert(size_plus_sentinel >= LQEntries); |
| |
| if (size_plus_sentinel > LQEntries) { |
| while (size_plus_sentinel > loadQueue.size()) { |
| DynInstPtr dummy; |
| loadQueue.push_back(dummy); |
| LQEntries++; |
| } |
| } else { |
| LQEntries = size_plus_sentinel; |
| } |
| |
| assert(LQEntries <= 256); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::resizeSQ(unsigned size) |
| { |
| unsigned size_plus_sentinel = size + 1; |
| if (size_plus_sentinel > SQEntries) { |
| while (size_plus_sentinel > storeQueue.size()) { |
| SQEntry dummy; |
| storeQueue.push_back(dummy); |
| SQEntries++; |
| } |
| } else { |
| SQEntries = size_plus_sentinel; |
| } |
| |
| assert(SQEntries <= 256); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::insert(const DynInstPtr &inst) |
| { |
| assert(inst->isMemRef()); |
| |
| assert(inst->isLoad() || inst->isStore()); |
| |
| if (inst->isLoad()) { |
| insertLoad(inst); |
| } else { |
| insertStore(inst); |
| } |
| |
| inst->setInLSQ(); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::insertLoad(const DynInstPtr &load_inst) |
| { |
| assert((loadTail + 1) % LQEntries != loadHead); |
| assert(loads < LQEntries); |
| |
| DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n", |
| load_inst->pcState(), loadTail, load_inst->seqNum); |
| |
| load_inst->lqIdx = loadTail; |
| |
| if (stores == 0) { |
| load_inst->sqIdx = -1; |
| } else { |
| load_inst->sqIdx = storeTail; |
| } |
| |
| loadQueue[loadTail] = load_inst; |
| |
| incrLdIdx(loadTail); |
| |
| ++loads; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::insertStore(const DynInstPtr &store_inst) |
| { |
| // Make sure it is not full before inserting an instruction. |
| assert((storeTail + 1) % SQEntries != storeHead); |
| assert(stores < SQEntries); |
| |
| DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n", |
| store_inst->pcState(), storeTail, store_inst->seqNum); |
| |
| store_inst->sqIdx = storeTail; |
| store_inst->lqIdx = loadTail; |
| |
| storeQueue[storeTail] = SQEntry(store_inst); |
| |
| incrStIdx(storeTail); |
| |
| ++stores; |
| } |
| |
| template <class Impl> |
| typename Impl::DynInstPtr |
| LSQUnit<Impl>::getMemDepViolator() |
| { |
| DynInstPtr temp = memDepViolator; |
| |
| memDepViolator = NULL; |
| |
| return temp; |
| } |
| |
| template <class Impl> |
| unsigned |
| LSQUnit<Impl>::numFreeLoadEntries() |
| { |
| //LQ has an extra dummy entry to differentiate |
| //empty/full conditions. Subtract 1 from the free entries. |
| DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads); |
| return LQEntries - loads - 1; |
| } |
| |
| template <class Impl> |
| unsigned |
| LSQUnit<Impl>::numFreeStoreEntries() |
| { |
| //SQ has an extra dummy entry to differentiate |
| //empty/full conditions. Subtract 1 from the free entries. |
| DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores); |
| return SQEntries - stores - 1; |
| |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::checkSnoop(PacketPtr pkt) |
| { |
| // Should only ever get invalidations in here |
| assert(pkt->isInvalidate()); |
| |
| int load_idx = loadHead; |
| DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr()); |
| |
| // Only Invalidate packet calls checkSnoop |
| assert(pkt->isInvalidate()); |
| for (int x = 0; x < cpu->numContexts(); x++) { |
| ThreadContext *tc = cpu->getContext(x); |
| bool no_squash = cpu->thread[x]->noSquashFromTC; |
| cpu->thread[x]->noSquashFromTC = true; |
| TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask); |
| cpu->thread[x]->noSquashFromTC = no_squash; |
| } |
| |
| Addr invalidate_addr = pkt->getAddr() & cacheBlockMask; |
| |
| DynInstPtr ld_inst = loadQueue[load_idx]; |
| if (ld_inst) { |
| Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask; |
| Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask; |
| |
| // Check that this snoop didn't just invalidate our lock flag |
| if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr |
| || load_addr_high == invalidate_addr) |
| && ld_inst->memReqFlags & Request::LLSC) |
| TheISA::handleLockedSnoopHit(ld_inst.get()); |
| } |
| |
| // If this is the only load in the LSQ we don't care |
| if (load_idx == loadTail) |
| return; |
| |
| incrLdIdx(load_idx); |
| |
| bool force_squash = false; |
| |
| while (load_idx != loadTail) { |
| DynInstPtr ld_inst = loadQueue[load_idx]; |
| |
| if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) { |
| incrLdIdx(load_idx); |
| continue; |
| } |
| |
| Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask; |
| Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask; |
| |
| DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n", |
| ld_inst->seqNum, load_addr_low, invalidate_addr); |
| |
| if ((load_addr_low == invalidate_addr |
| || load_addr_high == invalidate_addr) || force_squash) { |
| if (needsTSO) { |
| // If we have a TSO system, as all loads must be ordered with |
| // all other loads, this load as well as *all* subsequent loads |
| // need to be squashed to prevent possible load reordering. |
| force_squash = true; |
| } |
| if (ld_inst->possibleLoadViolation() || force_squash) { |
| DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n", |
| pkt->getAddr(), ld_inst->seqNum); |
| |
| // Mark the load for re-execution |
| ld_inst->fault = std::make_shared<ReExec>(); |
| } else { |
| DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n", |
| pkt->getAddr(), ld_inst->seqNum); |
| |
| // Make sure that we don't lose a snoop hitting a LOCKED |
| // address since the LOCK* flags don't get updated until |
| // commit. |
| if (ld_inst->memReqFlags & Request::LLSC) |
| TheISA::handleLockedSnoopHit(ld_inst.get()); |
| |
| // If a older load checks this and it's true |
| // then we might have missed the snoop |
| // in which case we need to invalidate to be sure |
| ld_inst->hitExternalSnoop(true); |
| } |
| } |
| incrLdIdx(load_idx); |
| } |
| return; |
| } |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::checkViolations(int load_idx, const DynInstPtr &inst) |
| { |
| Addr inst_eff_addr1 = inst->effAddr >> depCheckShift; |
| Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift; |
| |
| /** @todo in theory you only need to check an instruction that has executed |
| * however, there isn't a good way in the pipeline at the moment to check |
| * all instructions that will execute before the store writes back. Thus, |
| * like the implementation that came before it, we're overly conservative. |
| */ |
| while (load_idx != loadTail) { |
| DynInstPtr ld_inst = loadQueue[load_idx]; |
| if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) { |
| incrLdIdx(load_idx); |
| continue; |
| } |
| |
| Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift; |
| Addr ld_eff_addr2 = |
| (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift; |
| |
| if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) { |
| if (inst->isLoad()) { |
| // If this load is to the same block as an external snoop |
| // invalidate that we've observed then the load needs to be |
| // squashed as it could have newer data |
| if (ld_inst->hitExternalSnoop()) { |
| if (!memDepViolator || |
| ld_inst->seqNum < memDepViolator->seqNum) { |
| DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] " |
| "and [sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| memDepViolator = ld_inst; |
| |
| ++lsqMemOrderViolation; |
| |
| return std::make_shared<GenericISA::M5PanicFault>( |
| "Detected fault with inst [sn:%lli] and " |
| "[sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| } |
| } |
| |
| // Otherwise, mark the load has a possible load violation |
| // and if we see a snoop before it's commited, we need to squash |
| ld_inst->possibleLoadViolation(true); |
| DPRINTF(LSQUnit, "Found possible load violation at addr: %#x" |
| " between instructions [sn:%lli] and [sn:%lli]\n", |
| inst_eff_addr1, inst->seqNum, ld_inst->seqNum); |
| } else { |
| // A load/store incorrectly passed this store. |
| // Check if we already have a violator, or if it's newer |
| // squash and refetch. |
| if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum) |
| break; |
| |
| DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and " |
| "[sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| memDepViolator = ld_inst; |
| |
| ++lsqMemOrderViolation; |
| |
| return std::make_shared<GenericISA::M5PanicFault>( |
| "Detected fault with " |
| "inst [sn:%lli] and [sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| } |
| } |
| |
| incrLdIdx(load_idx); |
| } |
| return NoFault; |
| } |
| |
| |
| |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::executeLoad(const DynInstPtr &inst) |
| { |
| using namespace TheISA; |
| // Execute a specific load. |
| Fault load_fault = NoFault; |
| |
| DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n", |
| inst->pcState(), inst->seqNum); |
| |
| assert(!inst->isSquashed()); |
| |
| load_fault = inst->initiateAcc(); |
| |
| if (inst->isTranslationDelayed() && |
| load_fault == NoFault) |
| return load_fault; |
| |
| // If the instruction faulted or predicated false, then we need to send it |
| // along to commit without the instruction completing. |
| if (load_fault != NoFault || !inst->readPredicate()) { |
| // Send this instruction to commit, also make sure iew stage |
| // realizes there is activity. Mark it as executed unless it |
| // is a strictly ordered load that needs to hit the head of |
| // commit. |
| if (!inst->readPredicate()) |
| inst->forwardOldRegs(); |
| DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n", |
| inst->seqNum, |
| (load_fault != NoFault ? "fault" : "predication")); |
| if (!(inst->hasRequest() && inst->strictlyOrdered()) || |
| inst->isAtCommit()) { |
| inst->setExecuted(); |
| } |
| iewStage->instToCommit(inst); |
| iewStage->activityThisCycle(); |
| } else { |
| assert(inst->effAddrValid()); |
| int load_idx = inst->lqIdx; |
| incrLdIdx(load_idx); |
| |
| if (checkLoads) |
| return checkViolations(load_idx, inst); |
| } |
| |
| return load_fault; |
| } |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::executeStore(const DynInstPtr &store_inst) |
| { |
| using namespace TheISA; |
| // Make sure that a store exists. |
| assert(stores != 0); |
| |
| int store_idx = store_inst->sqIdx; |
| |
| DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n", |
| store_inst->pcState(), store_inst->seqNum); |
| |
| assert(!store_inst->isSquashed()); |
| |
| // Check the recently completed loads to see if any match this store's |
| // address. If so, then we have a memory ordering violation. |
| int load_idx = store_inst->lqIdx; |
| |
| Fault store_fault = store_inst->initiateAcc(); |
| |
| if (store_inst->isTranslationDelayed() && |
| store_fault == NoFault) |
| return store_fault; |
| |
| if (!store_inst->readPredicate()) { |
| DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n", |
| store_inst->seqNum); |
| store_inst->forwardOldRegs(); |
| return store_fault; |
| } |
| |
| if (storeQueue[store_idx].size == 0) { |
| DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n", |
| store_inst->pcState(), store_inst->seqNum); |
| |
| return store_fault; |
| } |
| |
| assert(store_fault == NoFault); |
| |
| if (store_inst->isStoreConditional()) { |
| // Store conditionals need to set themselves as able to |
| // writeback if we haven't had a fault by here. |
| storeQueue[store_idx].canWB = true; |
| |
| ++storesToWB; |
| } |
| |
| return checkViolations(load_idx, store_inst); |
| |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::commitLoad() |
| { |
| assert(loadQueue[loadHead]); |
| |
| DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n", |
| loadQueue[loadHead]->pcState()); |
| |
| loadQueue[loadHead] = NULL; |
| |
| incrLdIdx(loadHead); |
| |
| --loads; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst) |
| { |
| assert(loads == 0 || loadQueue[loadHead]); |
| |
| while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) { |
| commitLoad(); |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst) |
| { |
| assert(stores == 0 || storeQueue[storeHead].inst); |
| |
| int store_idx = storeHead; |
| |
| while (store_idx != storeTail) { |
| assert(storeQueue[store_idx].inst); |
| // Mark any stores that are now committed and have not yet |
| // been marked as able to write back. |
| if (!storeQueue[store_idx].canWB) { |
| if (storeQueue[store_idx].inst->seqNum > youngest_inst) { |
| break; |
| } |
| DPRINTF(LSQUnit, "Marking store as able to write back, PC " |
| "%s [sn:%lli]\n", |
| storeQueue[store_idx].inst->pcState(), |
| storeQueue[store_idx].inst->seqNum); |
| |
| storeQueue[store_idx].canWB = true; |
| |
| ++storesToWB; |
| } |
| |
| incrStIdx(store_idx); |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::writebackPendingStore() |
| { |
| if (hasPendingPkt) { |
| assert(pendingPkt != NULL); |
| |
| // If the cache is blocked, this will store the packet for retry. |
| if (sendStore(pendingPkt)) { |
| storePostSend(pendingPkt); |
| } |
| pendingPkt = NULL; |
| hasPendingPkt = false; |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::writebackStores() |
| { |
| // First writeback the second packet from any split store that didn't |
| // complete last cycle because there weren't enough cache ports available. |
| if (TheISA::HasUnalignedMemAcc) { |
| writebackPendingStore(); |
| } |
| |
| while (storesToWB > 0 && |
| storeWBIdx != storeTail && |
| storeQueue[storeWBIdx].inst && |
| storeQueue[storeWBIdx].canWB && |
| ((!needsTSO) || (!storeInFlight)) && |
| usedStorePorts < cacheStorePorts) { |
| |
| if (isStoreBlocked) { |
| DPRINTF(LSQUnit, "Unable to write back any more stores, cache" |
| " is blocked!\n"); |
| break; |
| } |
| |
| // Store didn't write any data so no need to write it back to |
| // memory. |
| if (storeQueue[storeWBIdx].size == 0) { |
| completeStore(storeWBIdx); |
| |
| incrStIdx(storeWBIdx); |
| |
| continue; |
| } |
| |
| ++usedStorePorts; |
| |
| if (storeQueue[storeWBIdx].inst->isDataPrefetch()) { |
| incrStIdx(storeWBIdx); |
| |
| continue; |
| } |
| |
| assert(storeQueue[storeWBIdx].req); |
| assert(!storeQueue[storeWBIdx].committed); |
| |
| if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) { |
| assert(storeQueue[storeWBIdx].sreqLow); |
| assert(storeQueue[storeWBIdx].sreqHigh); |
| } |
| |
| DynInstPtr inst = storeQueue[storeWBIdx].inst; |
| |
| RequestPtr &req = storeQueue[storeWBIdx].req; |
| const RequestPtr &sreqLow = storeQueue[storeWBIdx].sreqLow; |
| const RequestPtr &sreqHigh = storeQueue[storeWBIdx].sreqHigh; |
| |
| storeQueue[storeWBIdx].committed = true; |
| |
| assert(!inst->memData); |
| inst->memData = new uint8_t[req->getSize()]; |
| |
| if (storeQueue[storeWBIdx].isAllZeros) |
| memset(inst->memData, 0, req->getSize()); |
| else |
| memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize()); |
| |
| PacketPtr data_pkt; |
| PacketPtr snd_data_pkt = NULL; |
| |
| LSQSenderState *state = new LSQSenderState; |
| state->isLoad = false; |
| state->idx = storeWBIdx; |
| state->inst = inst; |
| |
| if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) { |
| |
| // Build a single data packet if the store isn't split. |
| data_pkt = Packet::createWrite(req); |
| data_pkt->dataStatic(inst->memData); |
| data_pkt->senderState = state; |
| } else { |
| // Create two packets if the store is split in two. |
| data_pkt = Packet::createWrite(sreqLow); |
| snd_data_pkt = Packet::createWrite(sreqHigh); |
| |
| data_pkt->dataStatic(inst->memData); |
| snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize()); |
| |
| data_pkt->senderState = state; |
| snd_data_pkt->senderState = state; |
| |
| state->isSplit = true; |
| state->outstanding = 2; |
| |
| // Can delete the main request now. |
| req = sreqLow; |
| } |
| |
| DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s " |
| "to Addr:%#x, data:%#x [sn:%lli]\n", |
| storeWBIdx, inst->pcState(), |
| req->getPaddr(), (int)*(inst->memData), |
| inst->seqNum); |
| |
| // @todo: Remove this SC hack once the memory system handles it. |
| if (inst->isStoreConditional()) { |
| assert(!storeQueue[storeWBIdx].isSplit); |
| // Disable recording the result temporarily. Writing to |
| // misc regs normally updates the result, but this is not |
| // the desired behavior when handling store conditionals. |
| inst->recordResult(false); |
| bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask); |
| inst->recordResult(true); |
| |
| if (!success) { |
| // Instantly complete this store. |
| DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. " |
| "Instantly completing it.\n", |
| inst->seqNum); |
| WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this); |
| cpu->schedule(wb, curTick() + 1); |
| completeStore(storeWBIdx); |
| incrStIdx(storeWBIdx); |
| continue; |
| } |
| } else { |
| // Non-store conditionals do not need a writeback. |
| state->noWB = true; |
| } |
| |
| bool split = |
| TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit; |
| |
| ThreadContext *thread = cpu->tcBase(lsqID); |
| |
| if (req->isMmappedIpr()) { |
| assert(!inst->isStoreConditional()); |
| TheISA::handleIprWrite(thread, data_pkt); |
| delete data_pkt; |
| if (split) { |
| assert(snd_data_pkt->req->isMmappedIpr()); |
| TheISA::handleIprWrite(thread, snd_data_pkt); |
| delete snd_data_pkt; |
| } |
| delete state; |
| completeStore(storeWBIdx); |
| incrStIdx(storeWBIdx); |
| } else if (!sendStore(data_pkt)) { |
| DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will" |
| "retry later\n", |
| inst->seqNum); |
| |
| // Need to store the second packet, if split. |
| if (split) { |
| state->pktToSend = true; |
| state->pendingPacket = snd_data_pkt; |
| } |
| } else { |
| |
| // If split, try to send the second packet too |
| if (split) { |
| assert(snd_data_pkt); |
| |
| // Ensure there are enough ports to use. |
| if (usedStorePorts < cacheStorePorts) { |
| ++usedStorePorts; |
| if (sendStore(snd_data_pkt)) { |
| storePostSend(snd_data_pkt); |
| } else { |
| DPRINTF(IEW, "D-Cache became blocked when writing" |
| " [sn:%lli] second packet, will retry later\n", |
| inst->seqNum); |
| } |
| } else { |
| |
| // Store the packet for when there's free ports. |
| assert(pendingPkt == NULL); |
| pendingPkt = snd_data_pkt; |
| hasPendingPkt = true; |
| } |
| } else { |
| |
| // Not a split store. |
| storePostSend(data_pkt); |
| } |
| } |
| } |
| |
| // Not sure this should set it to 0. |
| usedStorePorts = 0; |
| |
| assert(stores >= 0 && storesToWB >= 0); |
| } |
| |
| /*template <class Impl> |
| void |
| LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum) |
| { |
| list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(), |
| mshrSeqNums.end(), |
| seqNum); |
| |
| if (mshr_it != mshrSeqNums.end()) { |
| mshrSeqNums.erase(mshr_it); |
| DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size()); |
| } |
| }*/ |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::squash(const InstSeqNum &squashed_num) |
| { |
| DPRINTF(LSQUnit, "Squashing until [sn:%lli]!" |
| "(Loads:%i Stores:%i)\n", squashed_num, loads, stores); |
| |
| int load_idx = loadTail; |
| decrLdIdx(load_idx); |
| |
| while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) { |
| DPRINTF(LSQUnit,"Load Instruction PC %s squashed, " |
| "[sn:%lli]\n", |
| loadQueue[load_idx]->pcState(), |
| loadQueue[load_idx]->seqNum); |
| |
| if (isStalled() && load_idx == stallingLoadIdx) { |
| stalled = false; |
| stallingStoreIsn = 0; |
| stallingLoadIdx = 0; |
| } |
| |
| // Clear the smart pointer to make sure it is decremented. |
| loadQueue[load_idx]->setSquashed(); |
| loadQueue[load_idx] = NULL; |
| --loads; |
| |
| // Inefficient! |
| loadTail = load_idx; |
| |
| decrLdIdx(load_idx); |
| ++lsqSquashedLoads; |
| } |
| |
| if (memDepViolator && squashed_num < memDepViolator->seqNum) { |
| memDepViolator = NULL; |
| } |
| |
| int store_idx = storeTail; |
| decrStIdx(store_idx); |
| |
| while (stores != 0 && |
| storeQueue[store_idx].inst->seqNum > squashed_num) { |
| // Instructions marked as can WB are already committed. |
| if (storeQueue[store_idx].canWB) { |
| break; |
| } |
| |
| DPRINTF(LSQUnit,"Store Instruction PC %s squashed, " |
| "idx:%i [sn:%lli]\n", |
| storeQueue[store_idx].inst->pcState(), |
| store_idx, storeQueue[store_idx].inst->seqNum); |
| |
| // I don't think this can happen. It should have been cleared |
| // by the stalling load. |
| if (isStalled() && |
| storeQueue[store_idx].inst->seqNum == stallingStoreIsn) { |
| panic("Is stalled should have been cleared by stalling load!\n"); |
| stalled = false; |
| stallingStoreIsn = 0; |
| } |
| |
| // Clear the smart pointer to make sure it is decremented. |
| storeQueue[store_idx].inst->setSquashed(); |
| storeQueue[store_idx].inst = NULL; |
| storeQueue[store_idx].canWB = 0; |
| |
| // Must delete request now that it wasn't handed off to |
| // memory. This is quite ugly. @todo: Figure out the proper |
| // place to really handle request deletes. |
| storeQueue[store_idx].req.reset(); |
| if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) { |
| storeQueue[store_idx].sreqLow.reset(); |
| storeQueue[store_idx].sreqHigh.reset(); |
| } |
| |
| --stores; |
| |
| // Inefficient! |
| storeTail = store_idx; |
| |
| decrStIdx(store_idx); |
| ++lsqSquashedStores; |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::storePostSend(PacketPtr pkt) |
| { |
| if (isStalled() && |
| storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) { |
| DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " |
| "load idx:%i\n", |
| stallingStoreIsn, stallingLoadIdx); |
| stalled = false; |
| stallingStoreIsn = 0; |
| iewStage->replayMemInst(loadQueue[stallingLoadIdx]); |
| } |
| |
| if (!storeQueue[storeWBIdx].inst->isStoreConditional()) { |
| // The store is basically completed at this time. This |
| // only works so long as the checker doesn't try to |
| // verify the value in memory for stores. |
| storeQueue[storeWBIdx].inst->setCompleted(); |
| |
| if (cpu->checker) { |
| cpu->checker->verify(storeQueue[storeWBIdx].inst); |
| } |
| } |
| |
| if (needsTSO) { |
| storeInFlight = true; |
| } |
| |
| incrStIdx(storeWBIdx); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::writeback(const DynInstPtr &inst, PacketPtr pkt) |
| { |
| iewStage->wakeCPU(); |
| |
| // Squashed instructions do not need to complete their access. |
| if (inst->isSquashed()) { |
| assert(!inst->isStore()); |
| ++lsqIgnoredResponses; |
| return; |
| } |
| |
| if (!inst->isExecuted()) { |
| inst->setExecuted(); |
| |
| if (inst->fault == NoFault) { |
| // Complete access to copy data to proper place. |
| inst->completeAcc(pkt); |
| } else { |
| // If the instruction has an outstanding fault, we cannot complete |
| // the access as this discards the current fault. |
| |
| // If we have an outstanding fault, the fault should only be of |
| // type ReExec. |
| assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr); |
| |
| DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access " |
| "due to pending fault.\n", inst->seqNum); |
| } |
| } |
| |
| // Need to insert instruction into queue to commit |
| iewStage->instToCommit(inst); |
| |
| iewStage->activityThisCycle(); |
| |
| // see if this load changed the PC |
| iewStage->checkMisprediction(inst); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::completeStore(int store_idx) |
| { |
| assert(storeQueue[store_idx].inst); |
| storeQueue[store_idx].completed = true; |
| --storesToWB; |
| // A bit conservative because a store completion may not free up entries, |
| // but hopefully avoids two store completions in one cycle from making |
| // the CPU tick twice. |
| cpu->wakeCPU(); |
| cpu->activityThisCycle(); |
| |
| if (store_idx == storeHead) { |
| do { |
| incrStIdx(storeHead); |
| |
| --stores; |
| } while (storeQueue[storeHead].completed && |
| storeHead != storeTail); |
| |
| iewStage->updateLSQNextCycle = true; |
| } |
| |
| DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head " |
| "idx:%i\n", |
| storeQueue[store_idx].inst->seqNum, store_idx, storeHead); |
| |
| #if TRACING_ON |
| if (DTRACE(O3PipeView)) { |
| storeQueue[store_idx].inst->storeTick = |
| curTick() - storeQueue[store_idx].inst->fetchTick; |
| } |
| #endif |
| |
| if (isStalled() && |
| storeQueue[store_idx].inst->seqNum == stallingStoreIsn) { |
| DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " |
| "load idx:%i\n", |
| stallingStoreIsn, stallingLoadIdx); |
| stalled = false; |
| stallingStoreIsn = 0; |
| iewStage->replayMemInst(loadQueue[stallingLoadIdx]); |
| } |
| |
| storeQueue[store_idx].inst->setCompleted(); |
| |
| if (needsTSO) { |
| storeInFlight = false; |
| } |
| |
| // Tell the checker we've completed this instruction. Some stores |
| // may get reported twice to the checker, but the checker can |
| // handle that case. |
| |
| // Store conditionals cannot be sent to the checker yet, they have |
| // to update the misc registers first which should take place |
| // when they commit |
| if (cpu->checker && !storeQueue[store_idx].inst->isStoreConditional()) { |
| cpu->checker->verify(storeQueue[store_idx].inst); |
| } |
| } |
| |
| template <class Impl> |
| bool |
| LSQUnit<Impl>::sendStore(PacketPtr data_pkt) |
| { |
| if (!dcachePort->sendTimingReq(data_pkt)) { |
| // Need to handle becoming blocked on a store. |
| isStoreBlocked = true; |
| ++lsqCacheBlocked; |
| assert(retryPkt == NULL); |
| retryPkt = data_pkt; |
| return false; |
| } |
| return true; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::recvRetry() |
| { |
| if (isStoreBlocked) { |
| DPRINTF(LSQUnit, "Receiving retry: store blocked\n"); |
| assert(retryPkt != NULL); |
| |
| LSQSenderState *state = |
| dynamic_cast<LSQSenderState *>(retryPkt->senderState); |
| |
| if (dcachePort->sendTimingReq(retryPkt)) { |
| // Don't finish the store unless this is the last packet. |
| if (!TheISA::HasUnalignedMemAcc || !state->pktToSend || |
| state->pendingPacket == retryPkt) { |
| state->pktToSend = false; |
| storePostSend(retryPkt); |
| } |
| retryPkt = NULL; |
| isStoreBlocked = false; |
| |
| // Send any outstanding packet. |
| if (TheISA::HasUnalignedMemAcc && state->pktToSend) { |
| assert(state->pendingPacket); |
| if (sendStore(state->pendingPacket)) { |
| storePostSend(state->pendingPacket); |
| } |
| } |
| } else { |
| // Still blocked! |
| ++lsqCacheBlocked; |
| } |
| } |
| } |
| |
| template <class Impl> |
| inline void |
| LSQUnit<Impl>::incrStIdx(int &store_idx) const |
| { |
| if (++store_idx >= SQEntries) |
| store_idx = 0; |
| } |
| |
| template <class Impl> |
| inline void |
| LSQUnit<Impl>::decrStIdx(int &store_idx) const |
| { |
| if (--store_idx < 0) |
| store_idx += SQEntries; |
| } |
| |
| template <class Impl> |
| inline void |
| LSQUnit<Impl>::incrLdIdx(int &load_idx) const |
| { |
| if (++load_idx >= LQEntries) |
| load_idx = 0; |
| } |
| |
| template <class Impl> |
| inline void |
| LSQUnit<Impl>::decrLdIdx(int &load_idx) const |
| { |
| if (--load_idx < 0) |
| load_idx += LQEntries; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::dumpInsts() const |
| { |
| cprintf("Load store queue: Dumping instructions.\n"); |
| cprintf("Load queue size: %i\n", loads); |
| cprintf("Load queue: "); |
| |
| int load_idx = loadHead; |
| |
| while (load_idx != loadTail && loadQueue[load_idx]) { |
| const DynInstPtr &inst(loadQueue[load_idx]); |
| cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum); |
| |
| incrLdIdx(load_idx); |
| } |
| cprintf("\n"); |
| |
| cprintf("Store queue size: %i\n", stores); |
| cprintf("Store queue: "); |
| |
| int store_idx = storeHead; |
| |
| while (store_idx != storeTail && storeQueue[store_idx].inst) { |
| const DynInstPtr &inst(storeQueue[store_idx].inst); |
| cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum); |
| |
| incrStIdx(store_idx); |
| } |
| |
| cprintf("\n"); |
| } |
| |
| #endif//__CPU_O3_LSQ_UNIT_IMPL_HH__ |