blob: c7493646954c06325a1e79577361e0a05ab72e1d [file] [log] [blame]
/*
* Copyright (c) 2011-2012, 2016 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_O3_THREAD_CONTEXT_HH__
#define __CPU_O3_THREAD_CONTEXT_HH__
#include "config/the_isa.hh"
#include "cpu/o3/isa_specific.hh"
#include "cpu/thread_context.hh"
class EndQuiesceEvent;
namespace Kernel {
class Statistics;
}
/**
* Derived ThreadContext class for use with the O3CPU. It
* provides the interface for any external objects to access a
* single thread's state and some general CPU state. Any time
* external objects try to update state through this interface,
* the CPU will create an event to squash all in-flight
* instructions in order to ensure state is maintained correctly.
* It must be defined specifically for the O3CPU because
* not all architectural state is located within the O3ThreadState
* (such as the commit PC, and registers), and specific actions
* must be taken when using this interface (such as squashing all
* in-flight instructions when doing a write to this interface).
*/
template <class Impl>
class O3ThreadContext : public ThreadContext
{
public:
typedef typename Impl::O3CPU O3CPU;
/** Pointer to the CPU. */
O3CPU *cpu;
/** Pointer to the thread state that this TC corrseponds to. */
O3ThreadState<Impl> *thread;
/** Returns a pointer to the ITB. */
BaseTLB *getITBPtr() { return cpu->itb; }
/** Returns a pointer to the DTB. */
BaseTLB *getDTBPtr() { return cpu->dtb; }
CheckerCPU *getCheckerCpuPtr() { return NULL; }
TheISA::Decoder *
getDecoderPtr()
{
return cpu->fetch.decoder[thread->threadId()];
}
/** Returns a pointer to this CPU. */
virtual BaseCPU *getCpuPtr() { return cpu; }
/** Reads this CPU's ID. */
virtual int cpuId() const { return cpu->cpuId(); }
/** Reads this CPU's Socket ID. */
virtual uint32_t socketId() const { return cpu->socketId(); }
virtual ContextID contextId() const { return thread->contextId(); }
virtual void setContextId(int id) { thread->setContextId(id); }
/** Returns this thread's ID number. */
virtual int threadId() const { return thread->threadId(); }
virtual void setThreadId(int id) { return thread->setThreadId(id); }
/** Returns a pointer to the system. */
virtual System *getSystemPtr() { return cpu->system; }
/** Returns a pointer to this thread's kernel statistics. */
virtual TheISA::Kernel::Statistics *getKernelStats()
{ return thread->kernelStats; }
/** Returns a pointer to this thread's process. */
virtual Process *getProcessPtr() { return thread->getProcessPtr(); }
virtual void setProcessPtr(Process *p) { thread->setProcessPtr(p); }
virtual PortProxy &getPhysProxy() { return thread->getPhysProxy(); }
virtual FSTranslatingPortProxy &getVirtProxy();
virtual void initMemProxies(ThreadContext *tc)
{ thread->initMemProxies(tc); }
virtual SETranslatingPortProxy &getMemProxy()
{ return thread->getMemProxy(); }
/** Returns this thread's status. */
virtual Status status() const { return thread->status(); }
/** Sets this thread's status. */
virtual void setStatus(Status new_status)
{ thread->setStatus(new_status); }
/** Set the status to Active. */
virtual void activate();
/** Set the status to Suspended. */
virtual void suspend();
/** Set the status to Halted. */
virtual void halt();
/** Dumps the function profiling information.
* @todo: Implement.
*/
virtual void dumpFuncProfile();
/** Takes over execution of a thread from another CPU. */
virtual void takeOverFrom(ThreadContext *old_context);
/** Registers statistics associated with this TC. */
virtual void regStats(const std::string &name);
/** Reads the last tick that this thread was activated on. */
virtual Tick readLastActivate();
/** Reads the last tick that this thread was suspended on. */
virtual Tick readLastSuspend();
/** Clears the function profiling information. */
virtual void profileClear();
/** Samples the function profiling information. */
virtual void profileSample();
/** Copies the architectural registers from another TC into this TC. */
virtual void copyArchRegs(ThreadContext *tc);
/** Resets all architectural registers to 0. */
virtual void clearArchRegs();
/** Reads an integer register. */
virtual RegVal
readReg(int reg_idx)
{
return readIntRegFlat(flattenRegId(RegId(IntRegClass,
reg_idx)).index());
}
virtual RegVal
readIntReg(int reg_idx)
{
return readIntRegFlat(flattenRegId(RegId(IntRegClass,
reg_idx)).index());
}
virtual RegVal
readFloatRegBits(int reg_idx)
{
return readFloatRegBitsFlat(flattenRegId(RegId(FloatRegClass,
reg_idx)).index());
}
virtual const VecRegContainer &
readVecReg(const RegId& id) const
{
return readVecRegFlat(flattenRegId(id).index());
}
/**
* Read vector register operand for modification, hierarchical indexing.
*/
virtual VecRegContainer &
getWritableVecReg(const RegId& id)
{
return getWritableVecRegFlat(flattenRegId(id).index());
}
/** Vector Register Lane Interfaces. */
/** @{ */
/** Reads source vector 8bit operand. */
virtual ConstVecLane8
readVec8BitLaneReg(const RegId& id) const
{
return readVecLaneFlat<uint8_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 16bit operand. */
virtual ConstVecLane16
readVec16BitLaneReg(const RegId& id) const
{
return readVecLaneFlat<uint16_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 32bit operand. */
virtual ConstVecLane32
readVec32BitLaneReg(const RegId& id) const
{
return readVecLaneFlat<uint32_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 64bit operand. */
virtual ConstVecLane64
readVec64BitLaneReg(const RegId& id) const
{
return readVecLaneFlat<uint64_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Write a lane of the destination vector register. */
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::Byte>& val)
{ return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::TwoByte>& val)
{ return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::FourByte>& val)
{ return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::EightByte>& val)
{ return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); }
/** @} */
virtual const VecElem& readVecElem(const RegId& reg) const {
return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex());
}
virtual CCReg readCCReg(int reg_idx) {
return readCCRegFlat(flattenRegId(RegId(CCRegClass,
reg_idx)).index());
}
/** Sets an integer register to a value. */
virtual void
setIntReg(int reg_idx, RegVal val)
{
setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val);
}
virtual void
setFloatRegBits(int reg_idx, RegVal val)
{
setFloatRegBitsFlat(flattenRegId(RegId(FloatRegClass,
reg_idx)).index(), val);
}
virtual void
setVecReg(const RegId& reg, const VecRegContainer& val)
{
setVecRegFlat(flattenRegId(reg).index(), val);
}
virtual void
setVecElem(const RegId& reg, const VecElem& val)
{
setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
virtual void
setCCReg(int reg_idx, CCReg val)
{
setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val);
}
/** Reads this thread's PC state. */
virtual TheISA::PCState pcState()
{ return cpu->pcState(thread->threadId()); }
/** Sets this thread's PC state. */
virtual void pcState(const TheISA::PCState &val);
virtual void pcStateNoRecord(const TheISA::PCState &val);
/** Reads this thread's PC. */
virtual Addr instAddr()
{ return cpu->instAddr(thread->threadId()); }
/** Reads this thread's next PC. */
virtual Addr nextInstAddr()
{ return cpu->nextInstAddr(thread->threadId()); }
/** Reads this thread's next PC. */
virtual MicroPC microPC()
{ return cpu->microPC(thread->threadId()); }
/** Reads a miscellaneous register. */
virtual RegVal readMiscRegNoEffect(int misc_reg) const
{ return cpu->readMiscRegNoEffect(misc_reg, thread->threadId()); }
/** Reads a misc. register, including any side-effects the
* read might have as defined by the architecture. */
virtual RegVal readMiscReg(int misc_reg)
{ return cpu->readMiscReg(misc_reg, thread->threadId()); }
/** Sets a misc. register. */
virtual void setMiscRegNoEffect(int misc_reg, RegVal val);
/** Sets a misc. register, including any side-effects the
* write might have as defined by the architecture. */
virtual void setMiscReg(int misc_reg, RegVal val);
virtual RegId flattenRegId(const RegId& regId) const;
/** Returns the number of consecutive store conditional failures. */
// @todo: Figure out where these store cond failures should go.
virtual unsigned readStCondFailures()
{ return thread->storeCondFailures; }
/** Sets the number of consecutive store conditional failures. */
virtual void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
/** Executes a syscall in SE mode. */
virtual void syscall(int64_t callnum, Fault *fault)
{ return cpu->syscall(callnum, thread->threadId(), fault); }
/** Reads the funcExeInst counter. */
virtual Counter readFuncExeInst() { return thread->funcExeInst; }
/** Returns pointer to the quiesce event. */
virtual EndQuiesceEvent *
getQuiesceEvent()
{
return this->thread->quiesceEvent;
}
/** check if the cpu is currently in state update mode and squash if not.
* This function will return true if a trap is pending or if a fault or
* similar is currently writing to the thread context and doesn't want
* reset all the state (see noSquashFromTC).
*/
inline void
conditionalSquash()
{
if (!thread->trapPending && !thread->noSquashFromTC)
cpu->squashFromTC(thread->threadId());
}
virtual RegVal readIntRegFlat(int idx);
virtual void setIntRegFlat(int idx, RegVal val);
virtual RegVal readFloatRegBitsFlat(int idx);
virtual void setFloatRegBitsFlat(int idx, RegVal val);
virtual const VecRegContainer& readVecRegFlat(int idx) const;
/** Read vector register operand for modification, flat indexing. */
virtual VecRegContainer& getWritableVecRegFlat(int idx);
virtual void setVecRegFlat(int idx, const VecRegContainer& val);
template <typename VecElem>
VecLaneT<VecElem, true>
readVecLaneFlat(int idx, int lId) const
{
return cpu->template readArchVecLane<VecElem>(idx, lId,
thread->threadId());
}
template <typename LD>
void setVecLaneFlat(int idx, int lId, const LD& val)
{
cpu->template setArchVecLane(idx, lId, thread->threadId(), val);
}
virtual const VecElem& readVecElemFlat(const RegIndex& idx,
const ElemIndex& elemIndex) const;
virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx,
const VecElem& val);
virtual CCReg readCCRegFlat(int idx);
virtual void setCCRegFlat(int idx, CCReg val);
};
#endif