blob: dd1f9b3159352e207f68bbd21e4fcb6953fb1183 [file] [log] [blame] [edit]
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/optical_graph/OpticalWavelength.h"
#include "model/optical_graph/OpticalNode.h"
#include "model/optical_graph/OpticalLaser.h"
#include "model/optical_graph/OpticalModulator.h"
#include "model/optical_graph/OpticalFilter.h"
#include "model/optical_graph/OpticalDetector.h"
#include "model/optical_graph/OpticalWavelength.h"
#include <list>
#include <cmath>
namespace DSENT
{
using std::list;
using std::min;
OpticalWavelength::OpticalWavelength(const String& instance_name_, const WavelengthGroup& wavelengths_)
: m_instance_name_(instance_name_), m_wavelengths_(wavelengths_)
{
m_data_paths_ = new vector<OpticalDataPath>;
}
OpticalWavelength::~OpticalWavelength()
{
delete m_data_paths_;
}
const String& OpticalWavelength::getInstanceName() const
{
return m_instance_name_;
}
void OpticalWavelength::addDataPath(OpticalLaser* laser_, OpticalModulator* modulator_, OpticalDetector* detector_, double loss_)
{
// Expected wavelengths check
ASSERT(laser_->isExpected(getWavelengths()), "[Error] " + getInstanceName() +
" -> " + laser_->getInstanceName() + " is not expecting the set wavelengths!");
ASSERT(modulator_->isExpected(getWavelengths()), "[Error] " + getInstanceName() +
" -> " + modulator_->getInstanceName() + " is not expecting the set wavelengths!");
ASSERT(detector_->isExpected(getWavelengths()), "[Error] " + getInstanceName() +
" -> " + detector_->getInstanceName() + " is not expecting the set wavelengths!");
// Check to see if the modulator and laser already have a data path entry
bool entry_exists = false;
for (unsigned int i = 0; i < m_data_paths_->size(); ++i)
{
OpticalDataPath& current = m_data_paths_->at(i);
bool current_laser = current.laser == laser_;
bool current_modulator = current.modulator == modulator_;
ASSERT((current_modulator && current_laser) || !current_modulator, "[Error] " +
getInstanceName() + " -> Modulator is the same, but laser is different?");
// If it is already in the table
if (current_modulator)
{
entry_exists = true;
current.detectors.push_back(detector_);
current.losses.push_back(loss_);
}
}
// If it wasn't found, add the entry
if (!entry_exists)
m_data_paths_->push_back(OpticalDataPath(laser_, modulator_, detector_, loss_));
return;
}
const vector<OpticalDataPath>* OpticalWavelength::getDataPaths() const
{
return (const vector<OpticalDataPath>*) m_data_paths_;
}
WavelengthGroup OpticalWavelength::getWavelengths() const
{
return m_wavelengths_;
}
double OpticalWavelength::getLaserPower(unsigned int number_detectors_) const
{
ASSERT(number_detectors_ > 0, "[Error] " + getInstanceName() +
" -> Number of detectors must be non-zero!");
// Find the number of actual wavelengths
int number_wavelengths = getWavelengths().second - getWavelengths().first + 1;
// Laser power sum
double laser_power_sum = 0;
// Loop through all data paths
for (unsigned int i = 0; i < getDataPaths()->size(); ++i)
{
// Get the current data_path
const OpticalDataPath& current_path = getDataPaths()->at(i);
// Create data structure holding the worstcase detectors
list<double>* detectors = new list<double>();
// Get the extinction ratio of the modulator
double ER_dB = current_path.modulator->getExtinctionRatio();
// Get the insertion loss of the modulator
double IR_dB = current_path.modulator->getInsertionLoss();
// Walk through all detectors in a data path
for (unsigned int j = 0; j < current_path.detectors.size(); ++j)
{
// Convert sensitivity, extinction ratio, and path loss to a required laser power
double current_laser_power = current_path.detectors[j]->getSensitivity(ER_dB) *
std::pow(10.0, (current_path.losses[j] + IR_dB) / 10.0) *
1.0 / (1.0 - pow(10, -ER_dB / 10));
// Add the laser power
detectors->push_back(current_laser_power);
}
// Cap the number of detectors
number_detectors_ = std::min(number_detectors_, (unsigned int) current_path.detectors.size());
// Sort the detectors list in ascending order, only necessary if the number
// of detectors is < total number of detectors
if (number_detectors_ < detectors->size())
detectors->sort();
// Sum up the laser power from the worst-case detectors
list<double>::reverse_iterator iter = detectors->rbegin();
for (unsigned int j = 0; j < number_detectors_; ++j)
{
laser_power_sum += (*iter) / current_path.laser->getEfficiency();
++iter;
}
delete detectors;
}
return number_wavelengths * laser_power_sum;
}
} // namespace DSENT